Final Exam Problems

1. Consider the matrix

$$
A=\left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 5 & 1 \\
3 & 7 & -2
\end{array}\right)
$$

a. Find all solutions to the equation $A x=0$.

Answer: Using row reduction we get

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 2 & -3 \\
2 & 5 & 1 \\
3 & 7 & -2
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & 7 \\
0 & 1 & 7
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 1 & 7 \\
0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

and so we get

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
17 t \\
-7 t \\
t
\end{array}\right)=t\left(\begin{array}{c}
17 \\
-7 \\
1
\end{array}\right)
$$

b. Find all solutions (if any) to $A x=b$ where

$$
b=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

Answer: Do the same with the augmented matrix

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & -3 & 2 \\
2 & 5 & 1 & 0 \\
3 & 7 & -2 & 2
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & 7 & -4 \\
0 & 1 & 7 & -4
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & 7 & -4 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

and so there is a solution,

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
10 \\
-4 \\
0
\end{array}\right)+t\left(\begin{array}{c}
17 \\
-7 \\
1
\end{array}\right)
$$

c. Find all solutions (if any) to $A x=b$ where

$$
b=\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
$$

Answer: Do the same with the augmented matrix

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 2 & -3 & 2 \\
2 & 5 & 1 & 0 \\
3 & 7 & -2 & 1
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & 7 & -4 \\
0 & 1 & 7 & -5
\end{array}\right) \\
& \left(\begin{array}{cccc}
1 & 2 & -3 & 2 \\
0 & 1 & 7 & -4 \\
0 & 0 & 0 & -1
\end{array}\right)
\end{aligned}
$$

so there are no solutions.
2.
a. Find all the eigenvalues and eigenvectors of the matrix $A=\left[\begin{array}{cc}-5 & 2 \\ 2 & -2\end{array}\right]$.

Answer: The Eigenvalues are -1 and -6 corresponding to Eigenvectors $\binom{\frac{1}{2}}{1}$ and $\binom{-2}{1}$ respectively.
b. Find the general solution of the homogeneous ODE

$$
\frac{d}{d t}\binom{x}{y}=A\binom{x}{y}
$$

Answer: Using part a, we see that the general solution is

$$
\binom{x}{y}=c_{1} e^{-t}\binom{\frac{1}{2}}{1}+c_{2} e^{-6 t}\binom{-2}{1}
$$

3.

a. Write the following differential equation as a first order system:

$$
\frac{d^{3} y}{d x^{3}}+x^{2} \frac{d y}{d x}-y^{3}=0
$$

Express your answer as $Y_{0}^{\prime}=\cdots, Y_{1}^{\prime}=\cdots$, etc.

Answer: We let $Y_{0}=y, Y_{1}=y^{\prime}, Y_{2}=y^{\prime \prime}$ and so

$$
\begin{aligned}
& Y_{0}^{\prime}=Y_{1} \\
& Y_{1}^{\prime}=Y_{2} \\
& Y_{2}^{\prime}=-x^{2} Y_{1}+Y_{0}^{3}
\end{aligned}
$$

b. For the following, circle ALL statements about the above differential equation which are necessarily true:
(i) The equation is homogeneous.

Answer: Yes, it is homogeneous. Each term has a y.
(ii) The equation is linear.

Answer: No, it is not linear because of the y^{3} term.
4.
a. Find the Fourier series of the periodic function

$$
f(x)=\left\{\begin{array}{cc}
1 & \text { if }-1<x \leq 0 \\
-2 & \text { if } 0<x \leq 1
\end{array}\right.
$$

extended to have period 2. It may help to know that $\cos (\pi n)=(-1)^{n}$ and $\sin (\pi n)=0$ for any integer n.

Answer: We compute

$$
\begin{aligned}
a_{0} & =\frac{1}{2} \int_{-1}^{1} f(x) d x=-1 \\
a_{n} & =\int_{-1}^{0} \cos (\pi n x) d x-2 \int_{0}^{1} \cos (\pi n x) d x=0 \\
b_{n} & =\int_{-1}^{0} \sin (\pi n x) d x-2 \int_{0}^{1} \sin (\pi n x) d x \\
& =\frac{-1-(-1)^{n}}{n \pi}-2 \frac{(-1)^{n}-1}{n \pi}=\frac{3}{n \pi}\left(-1-(-1)^{n}\right)
\end{aligned}
$$

So the series is

$$
-1+\sum_{n=1}^{\infty} \frac{3}{n \pi}\left(-1-(-1)^{n}\right) \sin n \pi x
$$

b. At which points in the interval $-1 \leq x \leq 1$ does the series not converge to the value of the function? To which values does the series converge at these points?

Answer: At all of these points, the series converges to $\frac{1-2}{2}=-\frac{1}{2}$.
5.
a. Consider the following partial differential equation for $u(x, y)$:

$$
\begin{aligned}
u_{x x}+u_{y y}-3 u_{y} & =0 \\
u(x, 0) & =0 \\
u(x, 1) & =0 \\
u(0, y) & =0 \\
u(2, y) & =\sin (4 \pi y) .
\end{aligned}
$$

Use separation of variables to obtain two ODE associated with this PDE. (DO NOT solve them.)

Answer: We consider $u(x, y)=X(x) Y(y)$. The differential equation is

$$
X^{\prime \prime} Y+X Y^{\prime \prime}-2 X Y^{\prime}=0
$$

so we get

$$
\frac{X^{\prime \prime}}{X}=\frac{-Y^{\prime \prime}+2 Y^{\prime}}{Y}=k
$$

for any constant k. This gives the two ODE

$$
\begin{aligned}
X^{\prime \prime} & =k X \\
Y^{\prime \prime}-2 Y^{\prime} & =-k Y .
\end{aligned}
$$

b. One (and only one) of those ODE's can be formed into a Sturm-Liouville equation with homogeneous boundary conditions using the boundary conditions from the PDE. State which one and give the boundary conditions.

Answer: The only one that gives a full set of boundary conditions is the one for Y, which gives $Y(0)=0$ and $Y(1)=1$. Note that you do get $X(0)=0$ but cannot get another boundary condition for X.
6.

Consider the wave equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

for $u(x, t)$ on a finite domain $0 \leq x \leq 10$, with boundary conditions

$$
\begin{aligned}
u(0, t) & =0 \\
u(10, t) & =0
\end{aligned}
$$

Recall that the general solution of the wave equation with these boundary conditions is of the form

$$
u(x, t)=\sum_{n=1}^{\infty}\left(A_{n} \cos \frac{n \pi c t}{10}+B_{n} \sin \frac{n \pi c t}{10}\right) \sin \frac{n \pi x}{10}
$$

If the equation is given initial conditions

$$
\begin{aligned}
u(x, 0) & =\sin (5 \pi x) \\
\frac{\partial u}{\partial t}(x, 0) & =\sin (\pi x)
\end{aligned}
$$

then find the particular solution for $u(x, t)$ (that is, find the coefficients A_{n} and B_{n}). Note: you may leave your answer with terms like $A_{n}=\sin \frac{3 \pi n}{10}+\cos \pi n$ without further simplifying.

Answer: The two equations give

$$
\begin{aligned}
\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{10} & =\sin (5 \pi x) \\
\sum_{n=1}^{\infty} B_{n} \frac{n \pi c}{10} \sin \frac{n \pi x}{10} & =\sin (\pi x)
\end{aligned}
$$

It follows that all coefficients are zero except $A_{50}=1$ and $B_{10}=\frac{1}{\pi c}$. Hence the solution is

$$
u(x, t)=\frac{1}{\pi c} \sin \pi c t \sin \pi x+\cos 5 \pi c t \sin 5 \pi x
$$

7.

Consider the wave equation

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0) & =f(x) \\
\frac{\partial u}{\partial t}(x, 0) & =0
\end{aligned}
$$

on the WHOLE LINE $(x \in(-\infty, \infty))$. Find $\hat{u}(w, t)$, the Fourier transform of the solution $u(x, t)$. DO NOT solve for $u(x, t)$ (only its Fourier tranform). Note: the answer should contain $\hat{f}(w)$.

Answer: Taking the Fourier transform, we get

$$
\begin{aligned}
\frac{\partial^{2} \hat{u}}{\partial t^{2}} & =-c^{2} w^{2} \hat{u} \\
\hat{u}(w, 0) & =\hat{f}(w) \\
\frac{\partial \hat{u}}{\partial t}(w, 0) & =0 .
\end{aligned}
$$

The first equation can be solved as

$$
\hat{u}(w, t)=A(w) \cos c w t+B(w) \sin c w t
$$

Pluggint in the initial conditions, we get

$$
\hat{u}(w, t)=\hat{f}(w) \cos c w t
$$

8. For the following Sturm-Liouville problem, find all POSITIVE eigenvalues λ together with corresponding eigenfunctions.

$$
\begin{aligned}
y^{\prime \prime} & =-\lambda y \\
y^{\prime}(0) & =0, \quad y^{\prime}(2)=0
\end{aligned}
$$

Answer: The solutions are

$$
y=a \cos \sqrt{\lambda} x+b \sin \sqrt{\lambda} x
$$

Since r

$$
y^{\prime}=-a \sqrt{\lambda} \sin \sqrt{\lambda} x+b \sqrt{\lambda} \cos \sqrt{\lambda} x
$$

we can use the initial conditions to conclude that

$$
\begin{aligned}
b & =0 \\
\sin 2 \sqrt{\lambda} & =0
\end{aligned}
$$

and so

$$
\begin{aligned}
2 \sqrt{\lambda} & =\pi n \\
\lambda & =\left(\frac{n \pi}{2}\right)^{2}
\end{aligned}
$$

are the eigenvalues and the corresponding eigenfuctions are

$$
y_{n}=\cos \frac{n \pi}{2} x .
$$

9. Consider the heat equation

$$
u_{t}=c^{2} u_{x x}
$$

We want to solve this equation for $0<x<1$ and for all t with boundary conditions

$$
u_{x}(0, t)=u_{x}(1, t)=0
$$

(Notice the derivative in the boundary conditions) and with the initial condition

$$
u(x, 0)=x
$$

a. Separate the variables $u(x, t)=F(x) G(t)$ and find 2 ordinary differential equations satisfied by F and G.

Answer: Using separation of variables, we get

$$
F G^{\prime}=c^{2} F^{\prime \prime} G
$$

and so

$$
\frac{G^{\prime}}{c^{2} G}=\frac{F^{\prime \prime}}{F}
$$

and so this is equal to a constant and we get the two ODEs

$$
\begin{aligned}
F^{\prime \prime} & =k F \\
G^{\prime} & =c^{2} k G .
\end{aligned}
$$

b. Using the boundary conditions, find the F_{n}.

Answer: The boundary conditions become

$$
F^{\prime}(0)=0, \quad F^{\prime}(1)=0
$$

and so we get

$$
F=a \cos \sqrt{-k} x+b \sin \sqrt{-k} x
$$

(positive k do not result in any solutions). The boundary conditions give $b=0$ and $\sin \sqrt{-k}=0$ and so $k=-(\pi n)^{2}$ for integers n. It follows that

$$
F_{n}=\cos \pi n x
$$

(Note: $n=0$ is allowed, too).
c. Find the G_{n} and write down the eigenfunctions u_{n}.

Answer:

$$
G_{n}^{\prime}=-c^{2} \pi^{2} n^{2} G_{n}
$$

and so

$$
G_{n}=e^{-c^{2} \pi^{2} n^{t} t}
$$

d. Write down the general solution $u(x, t)$ and use the initial condition to find the coefficients.

Answer: The general solution is

$$
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-c^{2} \pi^{2} n^{t} t} \cos \pi n x
$$

The initial condition gives that

$$
x=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \pi n x
$$

We need to compute the coefficients of the even periodic extension, so we get

$$
\begin{aligned}
a_{0} & =\int_{0}^{1} x d x=\frac{1}{2} \\
a_{n} & =2 \int_{0}^{1} x \cos n \pi x d x=\frac{1}{\pi^{2} n^{2}}(\cos \pi n-1) \\
& =\frac{1}{\pi^{2} n^{2}}\left((-1)^{n}-1\right)
\end{aligned}
$$

so the solution is

$$
u(x, t)=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{\left((-1)^{n}-1\right)}{\pi^{2} n^{2}} e^{-c^{2} \pi^{2} n^{t} t} \cos \pi n x .
$$

e. What is $\lim _{t \rightarrow \infty} u(x, t)$

Answer: As $t \rightarrow 0$, all of the coefficients go to zero (because of the exponential), and so we get the limit is $\frac{1}{2}$.

