Math 322. Spring 2015
 Review Problems for Midterm 1

Chapter 13 (Complex Numbers):

Topic 1: Polar form of complex number .
Question 1.
Let $z=1-i$. Evaluate $w=1 / z$ in polar form, with the principal argument.
Answer:

$$
z=1-i=\sqrt{2} e^{-i \pi / 4}
$$

so

$$
\frac{1}{z}=\frac{1}{\sqrt{2}} e^{i \pi / 4}
$$

Question 2.

Let $z_{1}=-2+2 i$ and $z_{2}=-6-6 i$. Evaluate $\operatorname{Arg}\left(z_{1} / z_{2}\right)$.

Answer:

$$
\begin{aligned}
& z_{1}=2 \sqrt{2} e^{3 \pi i / 4} \\
& z_{2}=6 \sqrt{2} e^{-3 \pi i / 4}
\end{aligned}
$$

so

$$
\frac{z_{1}}{z_{2}}=\frac{1}{3} e^{3 \pi i / 2}=\frac{1}{3} e^{-\pi i / 2}
$$

so $\operatorname{Arg}\left(z_{1} / z_{2}\right)=-\pi / 2$.

Topic 2: Operations of complex numbers.

Question 3.

Let $z_{1}=3+2 i, z_{2}=2-2 i$, find
(a) $\frac{z_{1}+z_{2}}{\bar{z}_{2}^{2}}$
(b) $\operatorname{Im}\left(\left[(1-i)^{8} z_{1}^{2}\right]\right)$
(c) $\left|\frac{z_{1}-z_{2}}{z_{2}}\right|$
(d) $\operatorname{Re}\left(\left(z_{1}+1\right) z_{2}\right)$

Answer: a) $\frac{z_{1}+z_{2}}{z_{2}^{2}}=\frac{5}{(2+2 i)^{2}}=-\frac{5}{8} i$.
b) $\operatorname{Im}\left((1-i)^{8} z_{1}^{2}\right)=\operatorname{Im}\left((-2 i)^{4}(3+2 i)^{2}\right)=192$.
c) $\left|\frac{z_{1}-z_{2}}{z_{2}}\right|=\left|\frac{1+2 i}{2-2 i}\right|=\frac{\sqrt{5}}{2 \sqrt{2}}$.
d) $\operatorname{Re}\left(\left(z_{1}+1\right) z_{2}\right)=\operatorname{Re}((4+2 i)(2-2 i))=8+4=12$.

Topic 3: Roots of complex number .

Question 4.

Find all the solutions for $z^{4}=1$.
Answer: $z=1,-1, i,-i$.

Question 5.

Find all the solutions for $z^{3}=2-2 i$.
Answer: $z=8^{1 / 6} e^{-i \pi / 12}, 8^{1 / 6} e^{7 i \pi / 12}, 8^{1 / 6} e^{-i 9 \pi / 12}$

Topic 6: Exponential, trigonometric, hyperbolic and logarithmic functions, general power. Question 6.

Let $z=x+i y$. Find the Re and Im of $e^{1 / z}$.

Answer:

$$
e^{1 / z}=e^{\bar{z} /\left.z\right|^{2}}=\frac{e^{x}}{\left(x^{2}+y^{2}\right)}\left(\cos \frac{-y}{\left(x^{2}+y^{2}\right)}+i \sin \frac{-y}{\left(x^{2}+y^{2}\right)}\right)
$$

so $\operatorname{Re} e^{1 / z}=\frac{e^{x}}{\left(x^{2}+y^{2}\right)} \cos \frac{y}{\left(x^{2}+y^{2}\right)}$ and $\operatorname{Im} e^{1 / z}=-\frac{e^{x}}{\left(x^{2}+y^{2}\right)} \sin \frac{-y}{\left(x^{2}+y^{2}\right)}$.

Question 7.

Find the $\mathrm{Re}, \operatorname{Im}$ and modulus of $e^{-3+\frac{4 \pi}{7} i}$.
Answer: $\operatorname{Re}\left(e^{-3+\frac{4 \pi}{7} i}\right)=e^{-3} \cos \frac{4 \pi}{7}, \operatorname{Im}\left(e^{-3+\frac{4 \pi}{7} i}\right)=e^{-3} \sin \frac{4 \pi}{7},\left|e^{-3+\frac{4 \pi}{7} i}\right|=e^{-3 . .}$

Question 8.

Compute $\sin (5-2 i)$.
Answer:

$$
\begin{aligned}
\sin (5-2 i) & =\frac{e^{i(5-2 i)}-e^{-i(5-2 i)}}{2 i} \\
& =\frac{e^{2+5 i}-e^{-2-5 i}}{2 i} \\
& =\frac{e^{2}(\cos 5+i \sin 5)-e^{-2}(\cos 5-i \sin 5)}{2 i} \\
& =\cosh 2 \sin 5-i \sinh 2 \cos 5 .
\end{aligned}
$$

Question 9.

Compute $\cosh \left(\left(n+\frac{1}{2}\right) \pi i\right)$, where n is an integer.

Answer:

$$
\begin{aligned}
\cosh \left(\left(n+\frac{1}{2}\right) \pi i\right) & =\frac{e^{\left(\left(n+\frac{1}{2}\right) \pi i\right)}+e^{-\left(\left(n+\frac{1}{2}\right) \pi i\right)}}{2} \\
& =\frac{1}{2}(-i+i)=0
\end{aligned}
$$

Another way to see this is that

$$
\cosh i z=\cos z
$$

Question 10.

Show the following identity is true. (Hint: You may need to use the identity $\left.e^{i n x}=\left(e^{i x}\right)^{n}\right)$.

$$
\cos (3 \theta)=\cos ^{3}(\theta)-3 \cos (\theta) \sin ^{2}(\theta)
$$

Answer:

$$
e^{i 3 \theta}=\cos 3 \theta+i \sin \theta
$$

but also

$$
e^{i 3 \theta}=\left(e^{i \theta}\right)^{3}=(\cos \theta+i \sin \theta)^{3}=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right) .
$$

Now just compare the real parts.

Question 11.

Compute $\operatorname{Ln}(5-4 i), \operatorname{Ln}(-2)$.

Answer: These are easier if we write in polar form. Notice that

$$
5-4 i=\sqrt{41} e^{-i \arctan \frac{4}{5}}
$$

and so

$$
\operatorname{Ln}(5-4 i)=\ln \sqrt{41}-i \arctan \frac{4}{5}
$$

and

$$
\operatorname{Ln}(-2)=\ln 2+i \pi .
$$

Question 12.

Find the principal value of $(1+i)^{1-i}$.
Answer: Recall that the principal value is

$$
\begin{aligned}
(1+i)^{1-i} & =e^{(1-i) \operatorname{Ln}(1+i)} \\
& =e^{(1-i)(\ln \sqrt{2}+i \pi / 4)} \\
& =e^{\ln \sqrt{2}+\pi / 4+i\left(\frac{\pi}{4}-\ln \sqrt{2}\right)}
\end{aligned}
$$

and so we get

$$
\sqrt{2} e^{\pi / 4}\left(\cos \left(\frac{\pi}{4}-\ln \sqrt{2}\right)+i \sin \left(\frac{\pi}{4}-\ln \sqrt{2}\right)\right) .
$$

Chapter 7 (Linear Algebra):

Topic 1: Matrix Operations.

Question 1.

Which of the following equations may not be true? Why not?
(a) $A(B C)=(A B) C$
(b) $(A+B) C=A C+B C$
(c) $(A+B)^{2}=A^{2}+2 A B+B^{2}$
(d) $(A B)^{T}=B^{T} A^{T}$

Answer: a is true by associativity of matrix multiplication. b is true by distributivity. c is false becasue the middle term should be $A B+B A$ which is not equal to $2 A B$ in general. d is true since it is a property of transpose.

Question 2.

Let

$$
A=\left[\begin{array}{rr}
2 & -1 \\
1 & 0 \\
0 & 5
\end{array}\right], B=\left[\begin{array}{rrr}
3 & 2 & 1 \\
4 & -2 & 3
\end{array}\right]
$$

Calculate the following products or sums or give reasons why they are not defined.
(a) $A B$
(b) $B A$
(c) $A+B$
(d) $A-B^{T}$

Answer:

$$
\begin{aligned}
A B & =\left[\begin{array}{ccc}
2 & 6 & -1 \\
3 & 2 & 1 \\
20 & -10 & 15
\end{array}\right] \\
B A & =\left[\begin{array}{cc}
8 & 2 \\
6 & 11
\end{array}\right] \\
A-B^{T} & =\left[\begin{array}{cc}
-1 & -5 \\
-1 & 2 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

and $A+B$ does not make sense since the dimensions of the matrices are not the same.
Topic 2: Linear system of equations, row operations

Question 3.

Let

$$
A=\left(\begin{array}{ccc}
-2 & 2 & 6 \\
1 & -1 & 2 \\
-1 & 1 & 3
\end{array}\right)
$$

Does the system $A x=B$ with $B=\left(\begin{array}{l}1 \\ 3 \\ 2\end{array}\right)$ admit solutions? If so, how many? Find them.

Answer: No solutions. We have that the augmented matrix satisfies:

$$
\begin{aligned}
{\left[\begin{array}{cccc}
-2 & 2 & 6 & 1 \\
1 & -1 & 2 & 3 \\
-1 & 1 & 3 & 2
\end{array}\right] } & \sim\left[\begin{array}{cccc}
1 & -1 & 2 & 3 \\
-2 & 2 & 6 & 1 \\
-1 & 1 & 3 & 2
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 0 & 10 & 7 \\
0 & 0 & 5 & 5
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & -1 & 2 & 3 \\
0 & 0 & 10 & 7 \\
0 & 0 & 0 & 1.5
\end{array}\right]
\end{aligned}
$$

so there are no solutions.

Question 4.

Let

$$
A=\left[\begin{array}{rrr}
0 & -6 & 4 \\
1 & -2 & -2 \\
1 & -8 & 2 \\
3 & -12 & -2
\end{array}\right]
$$

Let $b=[1,2,3,7]^{T}$. Does the following system of equations have solution(s)? If your answer is yes, find the general form of the solution(s).

$$
A x=b .
$$

Answer:

The augmented matrix satisfies:

$$
\begin{aligned}
{\left[\begin{array}{rrrr}
0 & -6 & 4 & 1 \\
1 & -2 & -2 & 2 \\
1 & -8 & 2 & 3 \\
3 & -12 & -2 & 7
\end{array}\right] } & \sim\left[\begin{array}{rrrr}
1 & -2 & -2 & 2 \\
0 & -6 & 4 & 1 \\
1 & -8 & 2 & 3 \\
3 & -12 & -2 & 7
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
1 & -2 & -2 & 2 \\
0 & -6 & 4 & 1 \\
0 & -6 & 4 & 1 \\
0 & -6 & 4 & 1
\end{array}\right] \\
& \sim\left[\begin{array}{rrrr}
1 & -2 & -2 & 2 \\
0 & -6 & 4 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

It follows that the solutions are

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2+2 t+2\left(-\frac{1}{6}+\frac{2}{3} t\right) \\
-\frac{1}{6}+\frac{2}{3} t \\
t
\end{array}\right]=\left[\begin{array}{c}
\frac{10}{3} t+\frac{5}{3} \\
\frac{2}{3} t-\frac{1}{6} \\
t
\end{array}\right] .
$$

