$\mathcal{T E S T} 3$
 April $28^{\text {th }}, 2015$

Name:

Directions:

a. You may NOT use a calculator, your book, or your notes.
b. Do all problems in the spaces provided. If you do run out of space and continue a problem on the back, please indicate this.
c. Show all work. Unless otherwise noted, a solution without work is worth nothing.
d. Circle your answers.
e. Good Luck!

Score:

1.
2.
3.
4.
5. \qquad

Total \qquad

1. (10pts) Suppose $f(x)$ is a function defined on the interval $-10<x<10$ and suppose the Fourier series for $f(x)$ is given by the function $F(x)$ described by

$$
F(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{10} x+b_{n} \sin \frac{n \pi}{10} x\right)
$$

a. (5pts) Give a formula for the coefficient a_{0}. Your answer should have $f(x)$ in it and should have an integral in it.
b. (5pts) Give a formula for the coefficient b_{3}. Your answer should have $f(x)$ in it and should have an integral in it.
2. (15pts)

Recall the sawtooth function, which is the periodic extension of the function

$$
f(x)=x+\pi
$$

for $-\pi<x<\pi$. The Fourier series (computed in class and in the book) is

$$
F(x)=\pi+2\left(\sin x+\frac{1}{2} \sin 2 x-\frac{1}{3} \sin 3 x+\cdots\right) .
$$

What is the value of $F(\pi)$? Justify this in two ways: (a) using the convergence theorem for Fourier series and (b) by computing the series directly.

Extra credit (10 points maximum, very little partial credit): Compute the derivative of the Fourier series $F(x)$ by differentiating the series term by term. Does this series converge everywhere? Is this the series of a function that we know?
3.(20pts) Consider the function $g(x)=\sin x$ for $0 \leq x \leq \pi$. In this problem you may find the following formula useful:

$$
\int \sin a x \cos b x d x=-\frac{1}{2(a+b)} \cos ((a+b) x)-\frac{1}{2(a-b)} \cos ((a-b) x)
$$

a. (10pts) Compute the Fourier series for the odd half range Fourier expansion for g (the associated series should have period 2π).
b. (10pts) Compute the first two nonzero terms in the Fourier series for the even half range Fourier expansion for g (the associated series should have period 2π).
4. (30pts) Consider the wave equation for the function $u(x, t)$,

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

with boundary conditions $u(0, t)=0$ and $u(L, t)=0$. In this problem we will find $u(x, t)$ for the string of length $L=1$ and $c^{2}=1$ when the initial velocity is zero and the initial deflection with small k (say, $k=0.01$) is

$$
k\left(\sin \pi x-\frac{1}{2} \sin 2 \pi x\right)
$$

a. (15pts) Use separation of variables to find the following solutions to the differential equation with given boundary conditions (but not the initial conditions)

$$
u_{n}(x, t)=T_{n}(t) X_{n}(x)=\left(A_{n} \cos (n \pi t)+B_{n} \sin (n \pi t)\right) \sin (n \pi x) .
$$

b. (15pts) Find $u(x, t)$ that satisfy the differential equation with boundary conditions and the initial conditions (you may use Part a even if you cannot answer it).

5. (25pts)

Consider the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

on a metal bar of length π and with $c=1$ such that one end is kept at temperature $u(0, t)=0$ and the other has the property that $\frac{\partial u}{\partial x}(\pi, t)=0$.
a. (10pts) Using separation of variables derive two associated Sturm-Liouville equations, one with boundary conditions and one without boundary conditions.
b. (15pts) Solve the Sturm-Liouville equation with boundary conditions. (5 pts to solve either equation without boundary conditions)

