Math 322 Section 3 Written Homework 3

1) The delta function $\delta(x)$ is defined to be the a function such that for any function $f(x)$,

$$
\int_{a}^{b} \delta(x) f(x) d x=\left\{\begin{array}{cc}
f(0) & \text { if } a<0<b \\
0 & \text { if } a \geq 0 \text { or } b \leq 0
\end{array}\right.
$$

Actually, it can be shown that no such function exists, but it still has a Fourier series since, for instance,

$$
\int_{-\pi}^{\pi} \delta(x) \cos 3 x d x=\cos (0)=1
$$

1) Calculate $\int_{a}^{b} \delta\left(x-\frac{\pi}{2}\right) f(x) d x$ for any function $f(x)$.

Answer:

$$
\int_{a}^{b} \delta\left(x-\frac{\pi}{2}\right) f(x) d x=\left\{\begin{array}{cc}
f\left(\frac{\pi}{2}\right) & \text { if } a<\frac{\pi}{2}<b \\
0 & \text { otherwise }
\end{array}\right.
$$

The easiest way to see this is to substitute $y=x-\frac{\pi}{2}$.
2) Write the Fourier series for the delta function $\delta\left(x-\frac{\pi}{2}\right)$ gotten as an odd periodic half range expansion on the interval $[0, \pi]$.

Answer: For the odd periodic half range expansion, we have

$$
b_{n}=\frac{2}{\pi} \int_{0}^{\pi} \delta\left(x-\frac{\pi}{2}\right) \sin n x d x=\frac{2}{\pi} \sin \frac{n \pi}{2}
$$

Note that if n is even, this is zero so the expansion only has odd n. We get the Fourier series

$$
\frac{2}{\pi} \sin x-\frac{2}{\pi} \sin 3 x+\frac{2}{\pi} \sin 5 x-\frac{2}{\pi} \sin 7 x+\cdots
$$

or

$$
\sum_{n=1}^{\infty} \frac{2}{\pi} \sin \frac{n \pi}{2} \sin n x
$$

or even better

$$
\sum_{n=0}^{\infty} \frac{2}{\pi}(-1)^{n} \sin (2 n+1) x
$$

3) Show that the series does not converge for $x=\frac{\pi}{2}$.

Answer: for $x=\frac{\pi}{2}$ we get the series

$$
\frac{\pi}{2}(1+1+1+1+1+\cdots)
$$

which clearly does not converge.
4) Use separation of variables to find the solution to the heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

where $u(x, t)$ satisfies $u(0, t)=u(\pi, t)=0$ and $u(x, 0)=\delta\left(x-\frac{\pi}{2}\right)$.
Answer: We start with solutions of the form $u(x, t)=X(x) T(t)$ and find that

$$
X T^{\prime}=X^{\prime \prime} T
$$

and so

$$
\frac{T^{\prime}}{T}=\frac{X^{\prime \prime}}{X}
$$

and since the left is a funciton of t only and the right is a funciton of x only, we must have that

$$
\begin{aligned}
T & =k T \\
X^{\prime \prime} & =k X
\end{aligned}
$$

for some constant k. The boundary conditions lead to

$$
X(0)=X(\pi)=0
$$

and hence we must have that

$$
X_{n}(x)=B_{n} \sin n x
$$

are solutions which satisfy the boundary condition, with

$$
k=-n^{2}
$$

Thus we have

$$
T_{n}(t)=e^{-n^{2} t}
$$

We use superposition to get a general solution

$$
u(x, t)=\sum_{n=1}^{\infty} B_{n} e^{-n^{2} t} \sin n x
$$

Using the initial condition and the solution to question 3, we have that

$$
\begin{aligned}
u(x, t) & =\sum_{n=1}^{\infty} \frac{2}{\pi} \sin \frac{n \pi}{2} e^{-n^{2} t} \sin n x \\
& =\sum_{n=0}^{\infty} \frac{2}{\pi}(-1)^{n} e^{-(2 n+1)^{2} t} \sin (2 n+1) x \\
& =\frac{2}{\pi} e^{-t} \sin x-\frac{2}{\pi} e^{-9 t} \sin 3 x+\frac{2}{\pi} e^{-25 t} \sin 5 x-\frac{2}{\pi} e^{-49 t} \sin 7 x+\cdots
\end{aligned}
$$

5) Explain why we say that the heat equation shrinks high frequency modes faster than low frequency modes.

Answer: The amplitude of the mode corresponding to function $\sin n x$ is at most $\frac{2}{\pi} e^{-n^{2} t}$, and so as t gets bigger, this shrinks to zero. For larger n, this shrinks to zero faster.

