Math 322 Section 3 Written Homework 3

1) The delta function 0 (z) is defined to be the a function such that for any
function f (z),
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Actually, it can be shown that no such function exists, but it still has a Fourier
series since, for instance,

0 () cos 3xdx = cos (0) = 1.
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1) Calculate f: § (z — %) f (x) da for any function f (z).
Answer:
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The easiest way to see this is to substitute y =z — 7.
2) Write the Fourier series for the delta function ¢ (z — %) gotten as an odd
periodic half range expansion on the interval [0, 7] .
Answer: For the odd periodic half range expansion, we have
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Note that if n is even, this is zero so the expansion only has odd n. We get the
Fourier series
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or even better
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3) Show that the series does not converge for x = 7.
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Answer: for z = § we get the series
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which clearly does not converge.

4) Use separation of variables to find the solution to the heat equation
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where u (z,t) satisfies u (0,¢) = u (m,t) =0 and u (z,0) =6 (z — F).
Answer: We start with solutions of the form u (z,t) = X (z) T (¢) and find
that
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and since the left is a funciton of ¢ only and the right is a funciton of = only, we
must have that

T=kT
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for some constant k. The boundary conditions lead to
X0)=X(m)=0
and hence we must have that
X, () = By, sinnz
are solutions which satisfy the boundary condition, with
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Thus we have )
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We use superposition to get a general solution
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Using the initial condition and the solution to question 3, we have that
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5) Explain why we say that the heat equation shrinks high frequency modes
faster than low frequency modes.

Answer:2 The amplitude of the mode corresponding to function sinnx is at
most %e‘" . and so as t gets bigger, this shrinks to zero. For larger n, this
shrinks to zero faster.



