Written Homework 4

1) Find the complex Fourier series of the following functions

$$
\begin{aligned}
& g(x)=\sin x \quad-\pi<x<\pi \\
& h(x)= \begin{cases}0 & \text { if }-1<x \leq 0 \\
1 & \text { if } 0<x<1\end{cases}
\end{aligned}
$$

2) If the complex Fourier series of the function $f(x)=e^{x}$, where $-\pi<x<$ π, is given by

$$
F(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

then give the coefficients $c_{0}, c_{1}, c_{-1}, c_{3}$.
3) Convert the differential equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0) & =f(x)
\end{aligned}
$$

the function $u(x, t)$ to a differential equation for $\hat{u}(w, t)$.
4) Write an integral form of the solution to the heat equation on the whole real line with initial condition

$$
u(x, 0)= \begin{cases}1 & \text { if }|x| \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

5) Find the solution to the heat equation on the whole real line with initial condition $u(x, 0)=\delta(x-1)+\delta(x+1)$.
