Written Homework 4

1) Find the complex Fourier series of the following functions

$$
\begin{aligned}
& g(x)=\sin x \quad-\pi<x<\pi \\
& h(x)= \begin{cases}0 & \text { if }-1<x \leq 0 \\
1 & \text { if } 0<x<1\end{cases}
\end{aligned}
$$

Answer: For $g(x)$, we have that the coefficients are

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \sin x e^{-i n x} d x
$$

which you can do directly. Of course, it is easier to remember that

$$
\sin x=\frac{1}{2 i}\left(e^{i x}-e^{-i x}\right)
$$

and so we see that the Fourier series for g is just

$$
G(x)=\frac{i}{2} e^{-i x}-\frac{i}{2} e^{i x} .
$$

For h, we get

$$
\begin{aligned}
c_{n} & =\frac{1}{2} \int_{0}^{1} e^{-i n x} d x \\
& =\frac{i}{2 n}\left(e^{-i n}-1\right)
\end{aligned}
$$

if $n \neq 0$, and $c_{0}=\frac{1}{2}$. So we get the Fourier series for h is

$$
\sum_{n=-\infty}^{-1} \frac{i}{2 n}\left(e^{-i n}-1\right) e^{i n x}+\frac{1}{2}+\sum_{n=1}^{\infty} \frac{i}{2 n}\left(e^{-i n}-1\right) e^{i n x}
$$

2) If the complex Fourier series of the function $f(x)=e^{x}$, where $-\pi<x<$ π, is given by

$$
F(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

then give the coefficients $c_{0}, c_{1}, c_{-1}, c_{3}$.

Answer:

$$
\begin{aligned}
c_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} d x=\frac{e^{\pi}-e^{-\pi}}{2 \pi}=\frac{1}{\pi} \sinh \pi \\
c_{1} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} e^{-i x} d x=\frac{e^{(1-i) \pi}-e^{-(1-i) \pi}}{2 \pi(1-i)} \\
c_{-1} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} e^{i x} d x=\frac{e^{(1+i) \pi}-e^{-(1+i) \pi}}{2 \pi(1+i)} \\
c_{3} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} e^{-3 i x} d x=\frac{e^{(1-3 i) \pi}-e^{-(1-3 i) \pi}}{2 \pi(1-3 i)}
\end{aligned}
$$

3) Convert the differential equation

$$
\begin{aligned}
\frac{\partial u}{\partial t} & =c^{2} \frac{\partial^{2} u}{\partial x^{2}} \\
u(x, 0) & =f(x)
\end{aligned}
$$

the function $u(x, t)$ to a differential equation for $\hat{u}(w, t)$.
Answer:

$$
\begin{aligned}
\frac{\partial \hat{u}}{\partial t} & =-c^{2} w^{2} \hat{u} \\
\hat{u}(w, 0) & =\hat{f}(w)
\end{aligned}
$$

4) Write an integral form of the solution to the heat equation on the whole real line with initial condition

$$
u(x, 0)= \begin{cases}1 & \text { if }|x| \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Answer:

$$
u(x, t)=\frac{1}{\sqrt{4 \pi c^{2} t}} \int_{-2}^{2} e^{-\frac{(p-x)^{2}}{4 c^{2} t}} d p
$$

5) Find the solution to the heat equation on the whole real line with initial condition $u(x, 0)=\delta(x-1)+\delta(x+1)$.

Answer:

$$
u(x, t)=\frac{1}{\sqrt{4 \pi c^{2} t}}\left(e^{-\frac{(x-1)^{2}}{4 c^{2} t}}+e^{-\frac{(x+1)^{2}}{4 c^{2} t}}\right)
$$

