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1 Vector space de�nition

De�nition 1 A vector space V over a �eld F is a set together with two opera-
tions:

+ : V � V ! V

� : F � V ! V

called addition and scalar multiplication. with the results denoted x+ y and ax
respectively, that satisfy the following axioms:

VS 1 (Commutativity of addition) For all x; y 2 V; we have x+ y = y + x.

VS 2 (Associativity of addition) For all x; y; z 2 V; we have (x+ y) + z =
x+ (y + z) :

VS 3 (Additive identity) There exists an element e in V such that e+x = x for
all x 2 V: We usually denote e as 0 or ~0:

VS 4 (Additive inverse) For each x 2 V there exists a y 2 V such that x+y = 0:
We usually denote y as �x:

VS 5 (Multiplication by 1) For each x 2 V; 1x = x:

VS 6 (Associativity of scalar multiplication) For each a; b 2 F and x 2 V; we
have a (bx) = (ab)x:

VS 7 (Distributivity) For each a 2 F and x; y 2 V; we have a (x+ y) = ax+ay:

VS 8 (Distributivity) For each a; b 2 F and x 2 V; we have (a+ b)x = ax+ bx:

We sometimes call x+ y the sum and ax the product. Elements of the �eld
are called scalars and elements of the vector space are called vectors. We also
have the di¤erence x� y de�ned to be x+ (�y) :
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Proposition 2 We can denote the �nite sum x1+x2+� � �+xn without confusion
due to VS 2.

Proposition 3 We can denote the �nite product a1a2 � � � akx without confusion
due to VS 6.

Proposition 4 In any vector space a~0 = ~0 for any a 2 F:

Proof. We know that by VS 7 that for any a 2 F;

a~0 + a~0 = a
�
~0 +~0

�
= a~0:

Adding the additive inverse �
�
a~0
�
to both sides yields that a~0 = ~0:

Proposition 5 In any vector space, 0x = ~0 for each x 2 V:

Proof. We know that

0x+ x = (0 + 1)x = 1x = x

by using VS 5 and VS 8. It follows that

0x = 0x+ x+ (�x) = x+ (�x) = ~0:

Proposition 6 In any vector space, (�a)x = � (ax) = a (�x) for each a 2 F
and x 2 V: In particular, (�1)x = �x:

Proof. We will simply compute:

(�a)x+ ax = (�a+ a)x = 0x = ~0

using VS 7, the properties of the �eld, and Proposition 5. Similarly,

a (�x) + ax = a (�x+ x) = a0 = ~0;

where we have used VS 8, the de�nition of �x; and the last follows from Propo-
sition 4.

2 Examples of vector spaces

2.1 n-tuples

We are familiar with the vector space structure on R2; where (x1; y1)+(x2; y2) =
(x1 + x2; y1 + y2) and a (x; y) = (ax; ay) : One can check the axioms, and ~0 =
(0; 0) :
Similarly, one can take n-tuples of the �eld, denoted Fn:
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2.2 Matrices

Matrices are basically doubly indexed n-tuples, and written Fn�m; for instance.
The ~0 is the matrix of all zeroes.

2.3 Polynomials

Polynomials of a �xed degree: a0 + a1x + a2x2 + � � � + anxn; where x is a
variable and ai 2 F: One can also take polynomials in several variables. There
is a correspondence between polynomials of one variable of degree n and (n+1)-
tuples. One could also take homogeneous polynomials.

2.4 Functions

In fact, functions can be added together, as (f + g) (x) = f (x) + g (x) and
(af) (x) = a f (x) :Note that n-tuples can be considered functions f : f1; : : : ; ng !
F and the addition and scalar multiplication are described analogously. In this
way, one can consider sequences to be functions f : N! F and this gives them
a vector space property. The ~0 is the function that takes every element of the
domain to 0 2 F:

3 Problems

FIS Section 1.2, problems 9, 10, 13, 20, 21.

4 Subspaces

De�nition 7 If V is a vector space over F , a subset W � V is a subspace if
W is a vector space over F when using the operations of addition and scalar
multiplication from V:

Note that V and
n
~0
o
are subspaces.

n
~0
o
is called the trivial subspace and

V is called an improper subspace, so a proper subspace is not V and a nontrivial

subspace is not
n
~0
o
:

The following theorem is a useful way of checking to see if a subset is a
subspace.

Theorem 8 A subset W � V is a subspace if and only if the following are all
true:

1. 0 2W

2. (closed under addition) x; y 2W implies x+ y 2W

3. (closed under scalar multiplication) x 2 W implies that for all a 2 F;
ax 2W:
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Proof. If it is a subspace, it clearly satis�es these properties. If it satis�es these
properties, we need to check the axioms to see if W is a vector space. VS 1, VS
2, VS 5 follow from the fact that the addition is de�ned in V and V is a vector
space. VS 3 is assumed. Since additive inverse is the same as multiplication by
�1; the third assumption proves VS 4. VS 6, 7, 8 follow from the fact that each
of these is in W and the corresponding facts in V:

Proposition 9 If W and W 0 are subspaces of V; then W \W 0 is a subspace of
V: W [W 0 may not be.

Proof. We can use the theorem. Notice that if x; y 2 W \ W 0; then since
x; y 2 W; we have x + y 2 W and similarly for W 0: The argument for scalar
multiplication is similar. Notice that the vector spaces R�f0g and f0g�R are
subspaces of R2; but their union is not.

5 Examples of subspaces

5.1 Subspaces of n-tuples

The set of all points in R3 satisfying x+ y� z = 0 is a subspace. Note that the
set of point satisfying x+ y � z = 2 is not a subspace (why?).

5.2 Subspaces of matrices

The set of diagonal matrices is a subspace, as are upper triangular matrices and
lower triangular matrices. The trace of an n� n matrix M is de�ned as

tr (M) =
nX
i=1

Mii:

The set of matrices whose trace is zero is a vector space since the trace satis�ed

tr (M +M 0) = tr (M) + tr (M 0)

tr (aM) = a tr (M) :

(Check this!)
The matrices over R with only positive entries is not a subspace, nor is the

set of upper triangular matrices with 1�s on the diagonal (unit upper triangular
matrices).

5.3 Subspaces of functions

The set of continuous functions R! R is a subspace of the set of all functions
R! R. As are the function f : X ! F such that a particular point has value
0, e.g., the functions R! R such that f (1) = 0: Note that the functions such
that f (1) = 1 are not a subspace.
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The set of functions satisfying a linear homogeneous di¤erential equation
form a subspace, for instance functions satisfying f 00+f = 0 or functions satisfy-
ing @f

@x�
@f
@y = 0 form a subspace. If the di¤erential equation is not homogeneous

or nonlinear, the solution space is not a subspace.

6 Problems

FIS Section 1.3, problems 13, 17, 18, 19, 20, 23, 28, 30.
Comprehensive/Graduate Option: FIS Section 1.3 problem 31.

7 Linear combinations and spans

Notice that given a vector space V and a vector v 2 V; the subset ftv : t 2 Fg is
a subspace. In fact, this is the smallest subset containing v that is a subspace.
Similarly, if w 2 V also, then we can consider the space ftv + sw : t; s 2 Fg
and this is also a subspace. This subspace is called the span of fv; wg ; denoted
span (fv; wg), or the subspace generated by v and w: For a given t; s 2 F and
v; w 2 V; we say that tv + sw is a linear combination of v and w: We can
generalize this in the following way.

De�nition 10 Let V be a vector space over a �eld F and let S � V be nonempty
(we usually consider this set to be small, even �nite). A vector v 2 V is a linear
combination of vectors of S if there exist vectors u1; : : : ; un 2 S and scalars
a1; : : : ; an 2 F such that

v = a1u1 + � � �+ anun:

We say that v is a linear combination of the vectors u1; : : : ; un and a1; : : : ; an
are the coe¢ cients of the linear combination.

Note that it is a �nite sum since that is all that makes sense, even if S is
not �nite.
How would one check to see if a vector is a linear combination of a bunch

of others? Is (1; 2; 3) a linear combination of the vectors (1; 0; 1) and (0; 1; 1)?
The problem boils down to whether we can �nd appropriate coe¢ cients:

a1

0@ 1
0
1

1A+ a2
0@ 0
1
1

1A =

0@ 1
2
3

1A ;
or, written as a matrix problem0@ 1 0

0 1
1 1

1A� a1
a2

�
=

0@ 1
2
3

1A :
Can this equation be solved? (No! So (1; 2; 3) is not a linear combination
of (1; 0; 1) and (0; 1; 1)) If we could solve it, then we would have found the
appropriate coe¢ cients.
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De�nition 11 Given a nonempty subset S � V; the span of S; denoted span (S) ;
is the set of all linear combinations of vectors in S: We also de�ne span (?) =
f0g :

As in the example above, we see that the span gives a subspace.

Theorem 12 Given any nonempty subset S � V; the span of S is a subspace
of V: Moreover, any subspace of V that contains S must contain span (S) :

Proof. Straightforward by showing that it contains ~0; is closed under addition
(hardest part �think about it), and closed under scalar multiplication. For the
second part, we need to know that linear combinations must be in the subspace,
but this follows by induction and the fact that linear combinations of two vectors
must be in the subspace (from Theorem 8).
Determining vector spaces as spans is quite easy and natural. However, some

vector spaces are described in a di¤erent way: as the solution to some equa-
tions. The process of going from describing a vector space as a set of equations
to describing it as a span is usually called ��nding the general solution.�For
instance, the set of functions satisfying

f 00 + f = 0

can be shown to be a vector space. But that vector space is generated by sin t
and cos t and so the vector space can be described as

fa1 sin t+ a2 cos t : a1; a2 2 Rg :

8 Problems

FIS Section 1.4, problems 7, 11, 12, 13, 14, 15, 16.

9 Linear dependence and independence

De�nition 13 A subset S � V of a vector space V over F is called linearly
dependent if there exists a �nite number of distinct vectors u1; : : : ; un 2 S and
scalars a1; : : : ; an 2 F not all zero such that

a1u1 + a2u2 + � � �+ anun = 0:

We may also say the vectors in S are linearly dependent. If S is not linearly
dependent, it is said to be linearly independent, or also that its vectors are
linearly independent.

The importance and elegance of this de�nition cannot be overstated. Note
that if a �nite set of vectors is linearly dependent, that means that some vector
can be written as a linear combination of the others. But we do not have to
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specify which one, and it is often the case that not every vector can be written
as a linear combination of others. For instance, consider the vectors8<:

0@ 1
0
0

1A ;
0@ 0
1
0

1A ;
0@ 0
0
1

1A ;
0@ 1
1
0

1A9=; :
Notice that the vector

0@ 0
0
1

1A cannot be written as a linear combination of the

others, but

0@ 1
0
0

1A can. We can see the set is linearly dependent, however, but

seeing that 0@ 1
0
0

1A+
0@ 0
1
0

1A+ 0
0@ 0
0
1

1A�
0@ 1
1
0

1A =

0@ 0
0
0

1A :
How does one check to see if vectors are linearly dependent? Try to solve

a1v1 + � � �+ anvn = 0

for a solution of a1; : : : ; an that is not all zero (notice we can always take all the
ai�s to be zero; that is called the trivial solution). For vectors in Fn; this can
be translated into a matrix equation0@ j j j

v1 v2 � � � vn
j j j

1A
0B@ a1

...
an

1CA =

0B@ 0
...
0

1CA
where you are trying to �nd the coe¢ cients. This is the kind of linear algebra
you learned in Math 215 or Math 313 (for instance, row reduce to row echelon
form).

Theorem 14 Let V be a vector space, and let S1 � S2 � V: If S1 is linearly
dependent then S2 is linearly dependent. If S2 is linearly independent then S1
is linearly independent.

Theorem 15 Let S be a linearly independent subset of V and let v 2 V n S:
Then S [ fvg is linearly dependent if and only if v 2 span (S) :

Proof. Suppose S [ fvg is linearly dependent. Then we know that there exist
distinct u1; : : : ; un 2 S and a1; : : : ; an; b 2 F; not all 0, such that

a1u1 + � � �+ anun + bv = ~0:

Since S is linearly independent, b 6= 0: Thus

v = �b�1a1u1 � � � � � b�1anun
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and so v is a linear combination of vectors in S and hence in the span. Con-
versely, suppose v 2 span (S) : Then we can �nd scalars (not all zero) and vectors
in S such that

v = a1u1 + � � �+ akuk
so

a1u1 + � � �+ akuk � v = ~0
and so S [ fvg is linearly dependent.

10 Problems

FIS Section 1.5, problems 4, 6, 9, 10, 12, 14.

11 Basis and dimension

De�nition 16 A basis � for a vector space V is a linearly independent subset
of V that generates V; i.e., V = span (�) : If � is a basis for V; we also say that
the vectors of � form a basis for V:

We often have a natural basis that is called the standard basis:

� The standard basis for Fn is e1 = (1; 0; : : : ; 0) ; e2 = (0; 1; 0; 0; : : : ; 0) ; : : : ; en =
(0; 0; : : : ; 0; 1) :

� The standard basis for the polynomials of degree n with coe¢ cients in F;
denoted Pn (F ) ; is

�
1; x; x2; : : : ; xn

	
: The standard basis for all polyno-

mials P (F ) is
�
1; x; x2; x3; : : :

	
:

Note that a basis need not be �nite. It is a curious fact that every vector
space has a basis (the proof is hard and uses Zorn�s Lemma), though not always
a useful basis.

Theorem 17 Let V be a vector space and � = fu1; u2; : : : ; ung be a subset of
V: The set � is a basis for V if and only if each v 2 V can be uniquely expressed
as a linear combination of vectors of �; i.e., for each v 2 V there exist unique
scalars a1; : : : ; an such that

v = a1u1 + � � � anun:

Proof. First suppose � is a basis. Since � spans, there must be scalars such that
v = a1u1+ � � � anun: Since � is linearly independent, if we take v = ~0; then since
� is linearly independent, the coe¢ cients must be all equal to 0: We now need
to show that the representation of v is unique. Suppose v = b1u1 + � � � + bnun
as well. Then we �nd

~0 = v � v = a1u1 + � � � anun � (b1u1 + � � �+ bnun)
= (a1 � b1)u1 + � � �+ (an � bn)un:
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It follows that ai � bi = 0 for all i; or ai = bi and hence the coe¢ cients are
unique.
Conversely, we know that both � spans V and also that ~0 has a unique

representation as a linear combination, and since that must be a1 = a2 = � � � =
an = 0; � must be linearly independent.

Theorem 18 If a vector space V is generated by a �nite set S; then some subset
of S is a basis for V; and hence V has a �nite basis.

Proof. Suppose V is generated by a �nite set S: Let S0 = fu01; : : : ; u0kg be
the subset of S with the largest cardinality such that S0 is linearly independent
(since a set containing one vector is linearly independent, S0 must contain at
least one element). It follows that for any w 2 S n S0; we can write w as a
linear combination of vectors in S0 (since aw + a1u01 + � � � + aku0k = ~0 must
have a nontrivial solution since otherwise S0 [ fwg would be a larger linearly
independent subset). So that means that spanS = spanS0: Since spanS = V;
the result follows.

Theorem 19 (Replacement Theorem) Let V be a vector space that is gen-
erated by a set G containing exactly n vectors and let L be a linearly independent
subset of V containing exactly m vectors. Then m � n and there exists a set
H � G containing exactly n�m vectors such that L [H generates V:

Proof. See worksheet.

Corollary 20 Let V be a vector space having a �nite basis. Then any basis for
V contains the same number of vectors.

Proof. Let � and �0 be bases with n and m elements, respectively. Using the
replacement theorem with G = � and L = �0 yields m � n; while using it with
G = �0 and L = � yields n � m; hence n = m:

De�nition 21 A vector space called �nite-dimensional if it has a basis consist-
ing of a �nite number of vectors. The unique number of vectors in each basis
for V is called the dimension of V and is denoted dimV: A vector space that is
not �nite-dimensional is called in�nite-dimensional.

Corollary 22 Let V be vector space of dimension n:

1. Any �nite generating set for V contains at least n vectors, and a generating
set for V that contains exactly n vectors is a basis for V:

2. Any linearly independent subset of V that contains exactly n vectors is a
basis for V: Hence any linearly independent set has at most n vectors.

3. Every linearly independent subset of V can be extended to a basis for V:
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Proof. 1. Given any generating set, it has a subset that is a basis by Theorem
18. That basis must have n elements and so the set must have at least n
elements. If the generating set has n elements, then the subset must be the set
itself.
2. This is a special case of the Replacement Theorem with G = �; and in

this case m = n; and so the subset must already span. Once we have n vectors,
since the subset must span, any additional vector added to the set cannot be
linearly independent.
3. We can use the Replacement Theorem with G = �. Given a linearly

independent set L; we can extend it to a generating set with n elements taking
H � �: By the �rst part of this corollary, it must be a basis.

Theorem 23 Let W be a subspace of a �nite-dimensional vector space V: The
W is �nite dimensional and dimW � dimV: Moreover, if dimW = dimV; then
W = V:

Proof. IfW =
n
~0
o
; then dimW = 0 � dimV: IfW 6=

n
~0
o
; thenW contains a

nonzero vector x1: The set fx1g is a linearly independent set. We can continue to
choose vectors x2; : : : ; xk 2 W such that fx1; : : : ; xkg are linearly independent
until we cannot do this any more. We know that there can be no linearly
independent set in W with more than dimV elements, so k � dimV: This set
must generate W; otherwise we could extend it, so fx1; : : : ; xkg forms a basis.
If k = dimV , then by the corollary above we must have that the basis for W
spans V; and hence V =W:

Corollary 24 If W is a subspace of a �nite-dimensional vector space V; then
any basis for W can be extended to a basis for V:

Proof. We can produce the basis for V by starting with a basis for W and
adding in points one by one as in the proof of the previous theorem. Since
any linearly independent set has fewer than dimV elements, this will eventually
produce a basis for V that extends the basis for W: You could also use the
Replacement Theorem.

12 Problems

FIS Section 1.6, problems 4, 11, 12, 13, 16, 17, 20, 23, 33, 34.
Comprehensive/Graduate Option: FIS Section 1.6 problem 35.
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