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1 Linear Transformations

De�nition 1 Let V and W be vector spaces over F: We say a function T :
V ! W is a linear transformation from V to W if for all x; y 2 V and c 2 F;
we have

1. T (x+ y) = T (x) + T (y) and

2. T (cx) = cT (x) :

Sometimes we will just call T linear.

Proposition 2 The following are properties of linear transformations:

1. T
�
~0
�
= ~0

2. T is linear if and only if T (cx+ y) = cT (x) + T (y) for all x; y 2 V and
c 2 F:

3. T (x� y) = T (x)� T (y) for all x; y 2 V

4. T is linear if and only if for x1; : : : ; xn 2 V and a1; : : : ; an 2 F; we have

T

 
nX
i=1

aixi

!
=

nX
i=1

aiT (xi) :

We have the identity transformation IV : V ! V given by IV (x) = x and
the zero transformation T0 : V !W given by T0 (x) = ~0 for all x 2 V:

De�nition 3 Let V;W be vector spaces and let T : V ! W be a linear trans-
formation. The null space (or kernel) N (T ) of T is the set of vectors x 2 V
such that T (x) = 0; i.e.,

N (T ) = fx 2 V : T (x) = 0g :
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The range (or image) of R (T ) (or T (V )) of T is the subset of W consisting of
all images of vectors in V under T; i.e.,

R (T ) = fT (x) : x 2 V g = fy 2W : 9x 2 V s.t. y = T (x)g :

Theorem 4 N (T ) and R (T ) are subspaces of V and W , respectively.

Proof. Since T
�
~0
�
= ~0; we must have ~0 2 N (T ) and ~0 2 R (T ) : If x; y 2 N (T )

and a 2 F then T (ax+ y) = aT (x) + T (y) = ~0 + ~0 = ~0 so ax + y 2 N (T ) :
Similarly, if v; w 2 R (T ) and c 2 F then there exist x and y in V such that
v = T (x) and w = T (y) : Then cv + w = cT (x) + T (y) = T (cx+ y) and so
cv + w 2 R (T ) :

Theorem 5 If � = fv1; : : : ; vng is a basis for V; then

R (T ) = spanT (�) = span (fT (v1) ; : : : ; T (vn)g) :

Proof. Since every element of V is a linear combination of elements of �; we
have that if v 2 R (T ) then v = T (x) = T (

Pn
i=1 aivi) =

Pn
i=1 aiT (vi) so

v 2 spanT (�) : The other inclusion is trivial.

De�nition 6 If N (T ) and R (T ) are �nite-dimensional, then we de�ne the
nullity of T; denoted nullity (T ), and the rank of T; denoted rank (T ) ; as the
dimensions of N (T ) and R (T ) respectively.

Theorem 7 (Dimension Theorem) Let V;W be vector spaces and T : V !
W a linear transformation. If V is �nite-dimensional, then

nullity T + rankT = dimV:

Proof. Let fv1; : : : ; vkg be a basis forN (T ) and extend it to a basis fv1; : : : ; vng
of V: We claim that fT (vk+1) ; : : : ; T (vn)g is a basis of R (T ) ; which would
complete the proof. First we prove that fT (vk+1) ; : : : ; T (vn)g is linearly in-
dependent. Suppose

Pk�n
i=1 aiT (vk+i) =

~0; then T
�Pk�n

i=1 aivk+i

�
= ~0; which

means that
Pk�n

i=1 aivk+i 2 N (T ) : This is only possible if
Pk�n

i=1 aivk+i =
~0

(why?) and this is only possible if ai are all equal to zero, showing that
fT (vk+1) ; : : : ; T (vn)g are linearly independent. Now suppose v 2 R (T ) ; then
v = T (x) for some x 2 V: We can express x =

Pn
i=1 aivi: Since v = T (x) =Pn

i=1 aiT (vi) =
~0 +

Pn
i=k+1 aiT (vi) we see that fT (vk+1) ; : : : ; T (vn)g spans.

Theorem 8 If T : V !W is linear then T is one-to-one if and only if N (T ) =n
~0
o
:

Proof. Suppose T is one-to-one. Then if x 2 N (T ) ; then T (x) = ~0: However,
this means that x = ~0 since T

�
~0
�
= ~0 for any linear transformation and one-

to-one means this is the only one. Hence N (T ) =
n
~0
o
: Now suppose N (T ) =
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n
~0
o
: If T (u) = T (v) then T (u� v) = ~0: But this implies that u � v 2 N (T )

and hence u� v = ~0; so u = v and T is one-to-one.

Theorem 9 Let V and W be vector spaces of equal (�nite) dimension and let
T : V !W be linear. Then the following are equivalent:

1. T is one-to-one.

2. T is onto.

3. rankT = dimV:

Proof. If rankT = dimV then the Dimension Theorem says that nullity T = 0

and thus N (T ) =
n
~0
o
and so T is one-to-one.

If T is onto then T (V ) =W so rankT = dimW = dimV:
If T is one-to-one then nullity T = 0 so rankT = dimV = dimW: Since

R (T ) is a subspace of W with the same dimension, R (T ) =W:

Theorem 10 Let V and W be vector spaces over F and suppose fv1; : : : ; vng
is a basis for V: Given w1; : : : ; wn 2W; there exists exactly one linear transfor-
mation T : V !W such that T (vi) = wi for i = 1; : : : ; n:

Proof. Clearly we can de�ne a linear transformation, since fv1; : : : ; vng is a
basis, by

T

 
nX
i=1

aivi

!
=

nX
i=1

aiwi

since each vector can be uniquely written as a linear combination of vectors in
fv1; : : : ; vng : If we have two transformation T and T 0 that agree on T (vi) for
i = 1; : : : ; n then

T

 
nX
i=1

aivi

!
� T 0

 
nX
i=1

aivi

!
=

nX
i=1

ai (T (vi)� T 0 (vi)) = ~0:

Corollary 11 Let V;W be vector spaces and suppose fv1; : : : ; vng is a basis for
V: If U; T : V !W are linear and U (vi) = T (vi) for i = 1; : : : ; n; then U = T:

2 Problems

FIS Section 2.1, exercises 2,3,4,5,7,9,11,14,20,21,26,28,30,33,38
Comprehensive/Graduate option: 40.

3



3 Matrix representation of a linear transforma-
tion

From the end of last section, we see that linear transformations on �nite dimen-
sional vector spaces are determined entirely by what they do on a basis of the
vector space. For this reason, if the vector spaces are �nite dimensional, we can
represent a linear transformation by a matrix.

De�nition 12 Let V be a �nite-dimensional vector space. An ordered basis
for V is a basis for V endowed with a speci�c order.

This is not too unusual. We usually consider the ordered basis of Fn to
be fe1; e2; : : : ; eng where ei is 1 in the ith slot and 0 elsewhere. This is called
the standard ordered basis for Fn: Polynomials of degree at most n also have a
standard ordered basis:

�
1; x; x2; : : : ; xn

	
:

De�nition 13 Let � = fu1; u2; : : : ; ung be an ordered basis for a �nite-dimensional
vector space V over the �eld F: For x 2 V; let a1; a2; : : : ; an be the unique set of
scalars such that

x =
nX
i=1

aiui

(since � is a basis, such scalars are unique!) We de�ne the coordinate vector
of x relative to �; denoted [x]� 2 Fn; by

[x]� =

0BBB@
a1
a2
...
an

1CCCA :
Proposition 14 The map T� : V ! Fn given by T� (x) = [x]� is linear bijec-
tion.

De�nition 15 Let V and W be �nite dimensional vector spaces with ordered
bases � = fv1; : : : ; vng and  = fw1; : : : ; wmg (note that n andm can be di¤erent
numbers). Then we can write any linear transformation T : V ! W in terms
of the basis elements of � as

T (vj) =
mX
i=1

aijwi

for each j = 1; : : : ; n: The m�n matrix A = [aij ] is called the matrix represen-
tation of T in the ordered bases � and  and is written A = [T ]


� : If V = W

and � = ; we write A = [T ]� :

Remark 16 This choice of placement of the decorations is not standard and
there are better ways; we choose to stick with the convention in the book but I�m
not particularly happy with it.
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Proposition 17 If � and  are ordered basis of V and W and T : V ! W is
a linear transformation, the the following is true

[T (x)] = [T ]

� [x]� :

Proof. In fact, if � = fv1; : : : ; vng and  = fw1; : : : ; wng it is su¢ cient to take
x = vi for all i = 1; : : : ; n (why?) By de�nition of the matrix, we see that

T (vj) =
mX
i=1

aijwi

so

[T (vj)] =

0BBB@
a1j
a2j
...
amj

1CCCA
when [aij ] = [T ]


� : We see that if x =

Pn
i=1 civi then

T (x) =
nX
j=1

cjT (vj)

=
nX
j=1

mX
i=1

cjaijwi

=

mX
i=1

0@ nX
j=1

cjaij

1Awi
so

[T (x)] =

0BBB@
Pn

j=1 cja1jPn
j=1 cja2j
...Pn

j=1 cjamj

1CCCA = Ac

if c =

0BBB@
c1
c2
...
cn

1CCCA = [x]� : Hence we can re-write

[T (x)] = [T ]

� [x]� :

Linear transformations actually form a vector space once we de�ne some
operations.
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De�nition 18 Let T;U : V ! W be functions, where V;W are vector spaces
over F . Let a 2 F: Then we can de�ne T + U : V !W and aT : V !W as

(T + U) (x) = T (x) + U (x)

(aT ) (x) = aT (x) :

Theorem 19 Let T;U : V ! W be linear, where V;W are vector spaces over
F .

1. For all a 2 F; aT + U is linear.

2. Using these operations, the collection of linear transformations from V to
W forms a vector space over F:

Proof. The �rst is a direct computation:

(aT + U) (cx+ y) = aT (cx+ y) + U (cx+ y)

= acT (x) + aT (y) + cU (x) + U (y)

= acT (x) + cU (x) + aT (y) + U (y)

= c (aT + U) (x) + (aT + U) (y) :

(Note the second equality follows from linearity of T and U:) If we let T0; the
transformation that takes all of V to 0 2 W; we easily see that T0 satis�es the
properties of the additive identity. The additive inverse is de�ned as (�T ) (x) =
�T (x) ; and the other properties of a vector space are easily veri�ed.

De�nition 20 We denote the vector space of all linear transformations from
V to W by L (V;W ) : If V =W; we often write L (V ) instead of L (V; V ) :

Theorem 21 Let V and W be �nite-dimensional vector spaces with ordered
bases � and ; respectively, and let T;U 2 L (V;W ) : Then

1. [T + U ]� = [T ]

� + [U ]


�

2. [aT ]� = a [T ]

� for all scalars a:

It follows that the map L (V;W ) ! Fm�n given by T ! [T ]

� is a linear

transformation.

Proof. This proof is a very good exercise in understanding [T ]� : It is left as
an exercise.
The previous theorem allows us to do the following. We recall that if

V and W are �nite dimensional vector spaces with corresponding bases � =
fv1; : : : ; vng and  = fw1; : : : ; wmg ; the map

L (V;W )! Fm�n

T 7! [T ]

�
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is linear. There is also another map

Fm�n ! L (V;W )
A 7! L;�A

where L;�A is the linear transformation determined by

L;�A (vj) =
mX
i=1

Aijwi

(why does this uniquely determine a linear transformation?) Notice that

L;�A+cB (vj) =
mX
i=1

(Aij + cBij)wi =
mX
i=1

Aijwi+c
mX
i=1

Bijwi = L
;�
A (vj)+cL

;�
B (vj) ;

so this is also a linear map (why is it enough to check this on the basis vectors?).
We can check the compositions in both directions: Given T; if we write A =
[T ]


� ; then

LA (vj) =
mX
i=1

Aijwi = T (vj)

[LA]

� = A

and so these two linear maps are inverses of each other.
The map L;�A is denoted with the letter L since if the vector space V = Fn;

W = Fm; and the standard bases are used, then the transformation LA is called
left-multiplication, given by matrix multiplication:

LA (x) = Ax:

We will often omit notation �;  in LA in this case.

4 Problems

FIS section 2.2, exercises 3,4,5,7,8,9,11,12,15

5 Composition of linear transformations

Theorem 22 Let V; W , and Z be vector spaces over the same �eld F: Let
T : V !W and U :W ! Z be linear. Then U � T = UT : V ! Z is linear.

Proof. We need to verify for vectors x; y 2 V and a 2 F;
UT (x+ ay) = U (T (x+ ay))

= U (T (x) + aT (y))

= U (T (x)) + aU (T (y))

= UT (x) + aUT (y) :
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Theorem 23 Let V be a vector space. Let T;U1; U2 2 L (V ) : Recall that I is
the linear transformation I (x) = x: Then

1. (additivity of composition) T (U1 + U2) = TU1 + TU2 and (U1 + U2)T =
U1T + U2T;

2. (associativity of composition) T (U1U2) = (TU1)U2;

3. (identity transformation) TI = IT = T;

4. (composition respects scalar multiplication) a (U1U2) = (aU1)U2 = U1 (aU2)
for all scalars a:

This theorem is true even if the domains and codomains are not the same;
this will be an exercise in the book.
For the next part, one needs to understand the de�nition of matrix multi-

plication. Recall that if A is a m� n matrix and B is a n� p matrix, then the
m� p matrix C = AB is de�ned by making its entries

Cij =

nX
k=1

AikBkj ;

where 1 � i � m and 1 � j � p:
We can now see that for �nite linear transformations over �nite dimensional

vector spaces, the maps that associates L (V;W ) with Fm�n also respects the
algebra structure, mapping between composition and matrix multiplication:

Theorem 24 Let T : V ! W and U : W ! Z be linear transformations and
let � = fv1; : : : ; vng ; � = fw1; : : : ; wmg ;  = fz1; : : : ; zpg be ordered bases of
V;W;Z respectively. Then

[UT ]

� = [U ]


� [T ]

�
� :

Also, L;�BA = L
;�
B L�;�A if A 2 Fm�n and B 2 F p�m:

Proof. Let�s let A = [T ]�� ; B = [U ]

� and C = [UT ]


� : By de�nition,

T (vj) =
mX
i=1

Aijwi;

U (wi) =

pX
k=1

Bkizk;

UT (vj) =

pX
k=1

Ckjzk:
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But, also

UT (vj) = U (T (vj))

= U

 
mX
i=1

Aijwi

!

=
mX
i=1

AijU (wi)

=
mX
i=1

Aij

pX
k=1

Bkizk

=

pX
k=1

mX
i=1

BkiAijzk

=

pX
k=1

(BA)kj zk:

It follows that C = BA:
Similarly,

L;�BA (vj) =

pX
k=1

(BA)kj zk

=

pX
k=1

mX
i=1

BkiAijzk

=

mX
i=1

Aij

pX
k=1

Bkizk

=
mX
i=1

AijLB (wi)

= LBLA (vj) :

This theorems allows us to compare matrices and linear transformations,
and there are corresponding theorems to Theorems 22 and 23 with regard to
matrices. See the book for details.
Here is a de�nition we may need later:

De�nition 25 We de�ne the Kronecker delta �ij by �ij = 1 if i = j and �ij = 0
if i 6= j: The n� n identity matrix In is de�ned by (In)ij = �ij : We often omit
the subscript n for the identity matrix.
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6 Problems

Problem 1: Recall the transpose of a matrix, de�ned by
�
AT
�
ij
= Aji: Show

that (AB)T = BTAT :
FIS section 2.3, exercises 2, 3, 5, 6, 7, 8, 11, 14, 15, 16

7 Invertibility and isomorphism

De�nition 26 Let V and W be vector spaces and T : V ! W be a linear
transformation. A function U :W ! V is said to be an inverse of T if TU = IW
and UT = IV : If T has an inverse, we say T is invertible.

Recall that a function has an inverse if and only if it is both one-to-one and
onto. Also, if a function has an inverse, that inverse is unique; we usually denote
the inverse of T by the symbol T�1 if T is invertible.

Proposition 27 For invertible function T and U;

(TU)
�1
= U�1T�1

and �
T�1

��1
= T:

In particular, the inverse of T is itself invertible.

Remark 28 We generally do not write 1=T instead of T�1 since the former
seems to refer to division and inverse need not be related to division.

Proposition 29 If V;W are �nite-dimensional with the same dimension, then
a linear transformation T : V ! W is invertible if and only if it is either
one-to-one (or N (T ) = f0g) or onto or rank (T ) = dimV:

Proof. This follows from Theorem 9.
An important fact is that if T is invertible, then its inverse function is also

linear.

Theorem 30 If T : V ! W is an invertible invertible linear transformation,
then T�1 :W ! V is also an invertible linear transformation.

Proof. Let y; y0 2W and a 2 F and consider

T�1 (y + ay0) :

Since T is invertible, it is onto, so there exist x; x0 2 V such that y = T (x) ;
y0 = T (x0) ; and so

T�1 (y + ay0) = T�1 (T (x) + aT (x0))

= T�1 (T (x+ ax0))

= x+ ax0

= T�1 (y) + aT�1 (y0)
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where the second equality is from linearity of T; the third is the de�nition of
inverse, and the fourth follows from y = T (x) ; so x = T�1 (y) ; and similarly
for x0 and y0:

De�nition 31 If T : V ! W is an invertible linear transformation, we say
T is an isomorphism. If V and W are two vector spaces, we say they are
isomorphic if there exists an isomorphism between them (there are usually many
such isomorphisms if there is at least one).

Remark 32 In most �elds of math, we use isomorphism to denote a map be-
tween spaces that satis�es the appropriate property and is invertible and its in-
verse also satis�es that property. For linear algebra, the property is that of being
linear. By the previous theorem, we do not need to check to see if the inverse is
linear! If we were to use "di¤erentiable" as the property instead of linear, the
inverse is not automatically di¤erentiable, since f (x) = x3 is a di¤erentiable
map that is one-to-one and onto, but its inverse is not di¤erentiable.

Lemma 33 Suppose V and W are isomorphic vector spaces. Then V is �-
nite dimensional if and only if W is �nite dimensional. If they are both �nite
dimensional, then dimV = dimW:

Proof. There exists an isomorphism T : V ! W: Suppose V is �nite dimen-
sional. Then R (T ) =W since T is onto, but we proved previously that if � is a
basis of V; then T (�) is a basis for R (T ) ; so W is �nite dimensional with the
same dimension. Using T�1 we get the other implication.

Theorem 34 If V andW are �nite dimensional, then V andW are isomorphic
if and only if dimV = dimW:

Proof. In the lemma, we proved one direction. Now suppose that dimV =
dimW: Taking a basis � = fv1; : : : ; vng and  = fw1; : : : ; wng (note the same
size!), we can write down the linear map determined by

T (vi) = wi:

It is easy to see that this map is onto and hence an isomorphism.
Note that the isomorphism we produced in the proof depends on the choices

of bases, and thus there are many such isomorphisms!

Corollary 35 If V is a �nite dimensional vector space, then V is isomorphic
to Fn if and only if dimV = n:

Proof. If dimV = n; then we have the isomorphism V ! Fn given by v ! [v]�
where � is a basis of dimension n (why is it an isomorphism? it is linear
and injective and the dimensions of the domain and codomain are the same).
Conversely, if V is isomorphic to Fn; the theorem says the dimensions are the
same.
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Theorem 36 If V and W are �nite-dimensional vector spaces with bases � and
; then the map L (V;W )! Fm�n given by T ! [T ]


� is an isomorphism.

Proof. We have essentially been through all elements of the proof, even de�ning
the inverse map A ! L;�A : It was very important that we showed both maps
are (or at least one map is) linear.

Corollary 37 If V and W are �nite-dimensional vector spaces with dimV = n
and dimW = m; then dimL (V;W ) = mn:

Proof. We can use the isomorphism from the theorem, and then we see that
the dimensions of L (V;W ) and Fm�n are the same. The dimension of Fm�n is
known to be mn (recall that the basis consists of matrices with a single nonzero
entry).

The pervious work shows that the vector space of linear transformations
�nite dimensional vector spaces is isomorphic to a space of matrices. We sum-
marize some facts that are easy to prove that further describes the connections
between matrices and linear transformations:

Theorem 38 Let V and W be �nite-dimensional vector spaces with bases �
and : Let T : V ! W be a linear transformation and let A be a matrix. Then
the following are true:

1. Let B = [T ]� : T is an invertible linear transformation if and only if B is

an invertible matrix. In this case, B�1 =
�
T�1

�
�

2. A is invertible if and only if L;�A is an invertible linear transformation.

Moreover,
�
L;�A

��1
= L�;A�1 :

8 Problems

FIS section 2.4, exercises 4, 5, 6, 9, 10, 12, 15, 17, 20, 21
Comprehensive/Graduate option: FIS section 2.4, exercise 24

9 Change of coordinates matrix

We have a way of associating a �nite dimensional vector space V with Fn using
the map v ! [v]� : However, this is dependent on a choice of basis �; and one
may ask what happens if I chose a di¤erent basis �0? We know that it will
result in another map V ! Fn given by [v]�0 : How are the vectors [v]� and
[v]�0 related? The answer is given by the following theorem. Recall the every
vector space V has the identity map IV : V ! V given by IV (v) = v:

Theorem 39 Let �; �0 be two ordered bases for the �nite dimensional vector
space V; and let Q = [IV ]

�
�0 : Then
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1. Q is invertible and Q�1 = [IV ]
�0

� .

2. For any v 2 V; [v]� = Q [v]�0 :

Proof. Since IV is invertible (in fact, I�1V = IV ), Q is invertible. The second
statement follows from Theorem 24. Also, we have that

[v]� = [IV (v)]� = [IV ]
�
�0 [v]�0 = Q [v]�0 :

De�nition 40 The matrix Q = [IV ]
�
�0 is called the change of coordinate matrix.

We say Q changes �0-coordinates into �-coordinates.

Remark 41 The theorem also tells us something about di¤erent basis. In fact,
given any invertible matrix Q; we can use it to turn a basis �0 = fu1; : : : ; ung
into a new basis by looking at

� =

(
nX
i=1

Qi1ui; : : : ;
nX
i=1

Qinui

)
:

It is easy to see that � is also a basis with change of basis matrix Q:

We can do the same thing for linear operators:

Theorem 42 Let T 2 L (V ) for a �nite dimensional vector space V with or-
dered bases �; �0. If Q is the change of coordinate matrix that changes �0 coor-
dinates into � coordinates, then [T ]�0 = Q

�1 [T ]� Q:

Proof. We can check:

Q [T ]�0 = [IV ]
�
�0 [T ]�0 = [IV T ]

�
�0 = [T ]

�
�0 = [TIV ]

�
�0 = [T ]� Q:

The fact that linear transformations correspond to matrices give the a reason
that the following de�nition is useful.

De�nition 43 Let A and B be n� n matrices. We say that B is similar to A
if there exists an invertible matrix Q such that B = Q�1AQ:

10 Problems

FIS 2.5, exercises 2, 3, 4, 8, 9, 13, 14
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11 Dual spaces (Comprehensive/Graduate op-
tion)

The space L (V; F ) has a special name.

De�nition 44 Let V be a vector space over a �eld F . The dual space is de�ned
to be the space of linear functions V ! F (these are called linear functionals),
i.e., V � = L (V; F ) :

Here are some facts about dual spaces:

Theorem 45 If V is �nite dimensional, then V � is �nite dimensional and
dimV = dimV �: In fact, given a basis � = fx1; : : : ; xng for V there is an
associated subset �� = ff1; : : : ; fng of V � such that

fi (xj) = �ij

and �� is a basis for V (we call �� the dual basis to �).

Theorem 46 There is a linear map V ! V �� that takes x 2 V to a linear
transformation Tx : V � ! F such that Tx (f) = f (x) : If V is �nite-dimensional,
then the map x! Tx is an isomorphism.

12 Problems (Comprehensive/Graduate option)

FIS 2.6, exercises 2, 3, 5, 9
Read about the proofs of the above theorems and about the transpose of a

linear transformation in the chapter.
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