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1 Matrices

1.1 Main results of this section

The main theorem of this section is the following:

Theorem 1 Let A be an m � n matrix of rank r: Then r � m; r � n; and A
can be transformed by row and column operations into a matrix

D =

�
Ir O1
O2 O3

�
where O1; O2; O3 are zero matrices. Thus Dij = 1 if i = j � r and 0 otherwise.

Corollary 2 There exist invertible matrices B 2 Fm�m and C 2 Fn�n such
that D = BAC:

Corollary 3 Let A be an m� n matrix. Then

1. rankA = rankAT :

2. The rank of A is equal to the maximum number of linear independent rows,
which is equal to the dimension of the row space.

3. The rows and columns of A generate subspaces of the same dimension,
each with dimension equal to the rank of A:

Corollary 4 Every invertible matrix is the product of elementary matrices.

1.2 Explanation and proof of the corollaries

In order to make sense of these we need to know (1) what rank of a matrix is,
(2) what row and column operations are, (3) what elementary matrices are, and
(4) what the row and column spaces are.
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De�nition 5 If A 2 Fm�n; then the rankA = rankLA; where LA is the linear
transformation Fn ! Fm given by x ! Ax: The column space is the span of
the columns of A (so it is the span of n vectors in Fm) and the row space is the
span of the rows of A (so it is the span of m vectors in Fm).

Proposition 6 The column space of a matrix A is equal to R (LA) : In partic-
ular, the rank of A is equal to the dimension of the column space.

Proof. The ith column is simply Aei 2 R (LA) ; thus the column space is in
R (LA) : If y 2 R (LA) ; then there exists x 2 Fn such that y = Ax; and so if
the columns of A are labeled A1; : : : ; An; we have that

y = x1A1 + � � �+ xnAn:

We already know that row operations are important. It turns out that row
operations correspond to multiplication by certain matrices.

De�nition 7 If A 2 Fm�n; the elementary row [column] operations are the
following:

1. interchanging any two rows [columns] of A;

2. multiplying any row [column] of A by a nonzero scalar;

3. adding any scalar multiple of a row [column] of A to another row [column].

De�nition 8 An n � n elementary matrix is a matrix obtained by performing
one elementary row operation on In:

So examples of elementary matrices are0BB@
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1CCA ;
0BB@
1 0 0 0
0 2 0 0
0 0 1 0
0 0 0 1

1CCA ;
0BB@
1 0 0 0
0 1 0 0
3 0 1 0
0 0 0 1

1CCA
Theorem 9 Let A 2 Fm�n and suppose B is obtained from A by performing
an elementary row [column] operation. Then there exists an m � m [n � n]
elementary matrix E such that B = EA [B = AE], where E is the elemen-
tary matrix obtained from I in the same way. Conversely, multiplication by
elementary matrices correspond to performing row operations.

Proof. The proof relies on verifying this on each type of row/column operation
and each type of elementary matrix. It helps that we know that

Bei = Bi

where Bi is the ith column, and we can see similarly that eTi B is the ith row.
The details are left as an exercise.
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It now follows that elementary matrices are invertible (this can also be ver-
i�ed directly as well) since each row operation is reversible. Thus doing a se-
quence of row (column) operations is the same as multiplying on the left (right)
by a sequence of elementary matrices. Thus, the only thing left to show that
Theorem 1 implies Corollary 2 is that the product of invertible matrices is in-
vertible.

Theorem 10 Let A 2 Fm�n; P 2 Fm�m; and Q 2 Fn�n: If P and Q are
invertible, then

1. rank (AQ) = rankA

2. rank (PA) = rankA

3. rank (PAQ) = rankA

Proof. We can use what we know about linear transformations to see that

R (LAQ) = R (LALQ) = LALQ (F
n)

But since Q is invertible, it is onto, so

LALQ (F
n) = LA (F

n) = R (A) :

Thus the ranks of AQ and A are equal. Similarly, since P invertible, LP is an
isomorphism, so

dimLP (LA (F
n)) = dimLA (F

n) ;

or rank (PA) = rankA: The last one follows.

Corollary 11 The product of elementary matrices is invertible, and elementary
row and column operations and their compositions are rank preserving.

This also allows us to prove Corollary 4.
Proof of Corollary 4. We have just shown that the product of elementary
matrices is invertible. Now suppose a matrix is invertible. By Corollary 2,
we can convert the matrix into the form of D: Since this is rank preserving
and the original matrix is invertible, D must be the identity matrix. But
then we have that I = BAC where B and C are products of elementary
matrices. It follows that A = B�1C�1; which is also a product of elemen-
tary matrices (if B = E1E2 � � �Ek and C = Ek+1Ek+1 � � �E` then B�1C�1 =
E�1k � � �E�11 E�1` � � �E�1k+1; which is a product of elementary matrices since the
inverse of an elementary matrix is an elementary matrix).
Finally, we can prove Corollary 3.

Proof of Corollary 3. We �rst note that if E is an elementary matrix, then ET

is also an elementary matrix (check this!) and also that DT has the same form
as D (though the dimensions of the matrix may di¤er). So if D = BAC then we
have that DT = CTATBT ; and the rank of DT is clearly equal to r = rankA:
Since multiplication by CT and BT is rank preserving (it is the product of
elementary matrices) we have that rankAT = rankDT = rankD = rankA: The
others follow from the fact that rankA is the dimension of the column space
of A and rankAT is the dimension of the row space of A (which is the column
space of AT ).
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1.3 Proof of Theorem 1

We phrase this as a sequence of exercises:
We will induct on m; the number of rows. Before looking at base cases, we

actually think about the inductive step:
1) If m > 1 and n > 1 and A is not the zero matrix, show that by a �nite

number of row and column operations, A can be transformed into a matrix of
the form:

B =

0BBB@
1 0 � � � 0
0
... B0

0

1CCCA
where B0 is a matrix of dimension (m� 1) � (n� 1) : Note that rankB =
1 + rankB0 � m and � n by the inductive hypothesis.
We now can use the inductive hypothesis on B0: We need only prove the

cases of n = 1; m = 1; and for the zero matrix. Note that the zero matrix is
already in the proper form, and has rank equal to zero (less than n and m).
2) Show that if n = 1 and A is not the zero matrix, we can transform A to

the appropriate form by a �nite sequence of column operations, and rankA = 1:
3) Show that if m = 1 and A is not the zero matrix, we can transform A to

the appropriate form by a �nite sequence of row operations and rankA = 1.
This completes the proof. I suggest you go through the process on an actual

example. The one from the book is:

A =

0BB@
0 2 4 2 2
4 4 4 8 0
8 2 0 10 2
6 3 2 9 1

1CCA :
You should �nd that this matrix has rank 3 and that you can transform it by
row and column operations to the matrix0BB@

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

1CCA :

2 Inverse matrix

We already know that an n� n matrix is invertible if and only if it has rank n;
and if and only if it is a product of elementary matrices. We can compute the
inverse using augmented matrices.

De�nition 12 Let A and B be m � n and m � p matrices, respectively. The
augmented matrix (AjB) is the m�(n+ p) matrix (A B) ; i.e., the matrix whose
�rst n columns are the columns of A and the last p columns are the columns of
B:
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Proposition 13 Suppose A and B both have n rows and supposeM is an m�n
matrix. Then

M (AjB) = (MAjMB) :

Proof. Exercise.
Now we can use this idea to �nd the inverse, since we see that

A�1 (AjI) =
�
A�1AjA�1

�
=
�
IjA�1

�
:

Furthermore, we know that if A is invertible, we can use row and column oper-
ations to transform A into I; but in particular, since A is invertible, we do not
need column operations. Thus there is an invertible matrix B; the product of
elementary matrices, such that BA = I: If we apply this matrix to (AjI) ; we
get

B (AjI) = (BAjB) = (IjB) :
Since BA = I; we have that B = A�1 and so we can construct the inverse by
converting (AjI) to

�
IjA�1

�
via row operations.

3 Problems

� FIS Section 3.1 exercises 2, 3, 5, 7-11

� FIS Section 3.2 exercises 2-7, 11, 14, 15, 18, 21. Read the Theorem 3.7
and its proof.

4 Systems of linear equations

Recall a system of m linear equations in n unknowns can be written as

Ax = b

where

A =

0BBB@
a11 a12 � � � a1n
a21 a22 � � � a2n
...

...
...

am1 am2 � � � amn

1CCCA
and

b =

0BBB@
b1
b2
...
bm

1CCCA
are given and

x =

0BBB@
x1
x2
...
xn

1CCCA
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is the unknown. The solution set S of the equation Ax = b is the set of all
x 2 Fn that satisfy this equation and each element of S is said to be a solution
of the equation.

De�nition 14 The system Ax = b is said to be consistent if its solution set S
is nonempty, otherwise it is said to be inconsistent.

De�nition 15 If b = ~0; then we say the system is homogeneous, otherwise it
is nonhomogeneous.

Note that each equation Ax = b has an associated homogeneous equation
Ax = ~0:
Notice that every homogeneous system has a solution, namely x = ~0; so

every homogeneous linear system is consistent.

Theorem 16 Let Ax = ~0 be a homogeneous system of m equations with n
unknowns over a �eld F , and let K denote the solution set. Then K = N (LA)
and hence K is a subspace of Fn of dimension n� rankA:

Corollary 17 If m < n then Ax = 0 has a nonzero solution.

Proof. We know that rankA = rankLA � m; and so the dimension of the
solution set K is n� rankA � n�m > 0:

Theorem 18 Let K be the solution set to the linear equation Ax = b and let
KH be the solution set to the associated homogeneous equation Ax = ~0: Then
for any solution s 2 K;

K = fsg+KH = fs+ k : k 2 KHg :

Note that this says that K is not a vector space, but an a¢ ne space (we did
not de�ne this, but it is a translation of a vector space). KH is a vector space.
Proof. Suppose s 2 K: If k 2 KH; then A (s+ k) = As+ Ak = b+~0 = b; and
so s+k 2 K; and we get fsg+KH � K: Conversely, if x 2 K; then A (s� x) =
As�Ax = b� b = ~0 and so s� x 2 KH ; and x = s+ (x� s) 2 fsg+KH :

Theorem 19 Let Ax = b be a system of linear equations in n equations and n
unknowns. If A is invertible, then the system has exactly one solution, A�1b:
Conversely, if the system has exactly one solution, then A is invertible.

Proof. SupposeA is invertible. Then clearly if x = A�1b thenAx = A
�
A�1b

�
=�

AA�1
�
b = Ib = b so x is a solution. Suppose s is any solution, then

As = b

A�1As = A�1b

and we can conclude that s = A�1b:
Conversely, suppose Ax = b has exactly one solution, s: If k 2 KH ; then s+k

is also a solution, so if s is the only solution, we must have thatKH =
n
~0
o
: That

implies that N (LA) =
n
~0
o
and looking at the dimsensions we can conclude that

A is invertible.
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Theorem 20 Let Ax = b be a system of linear equations. Then the system is
consistent if and only if rankA = rank (Ajb) :

Proof. Notice Ax = b is consistent if and only if b 2 R (LA) if and only if b is
in the column space (span of the columns of A). This is true if and only if the
ranks of (Ajb) is the same as the rank of A:

5 Problems

FIS section 3.3, exercises 2-6, 8-10

6 Solving systems of linear equations

De�nition 21 Two systems of linear equations are equivalent if they have the
same solution set.

Theorem 22 Let Ax = b be a system of m linear equations in n unknowns,
and let C 2 Fm�m be invertible. Then the system

(CA)x = Cb

is equivalent to Ax = b:

Proof. Suppose x is a solutoin to Ax = b: Then C (Ax) = Cb and hence
(CA)x = Cb: Conversely, suppose (CA)x = Cb: Then Ax = C�1Cb = b:

Corollary 23 If (A0jb0) is obtained from (Ajb) by a �nite number of elementary
row operations, then A0x = b0 is equivalent to the original system.

Proof. The row operations can be represented by an invertible matrix C; and
so (A0jb0) = C (Ajb) = (CAjCb) : The result now follows from the Theorem.
We now describe an algorithm for easily solving linear systems called Gaussian

Elimination. We will �nd a sequence of row operations to produce zeroes in the
matrix:
1) In the leftmost nonzero column, create a 1 in the �rst row.
2) Use row operations of the third type to obtain zeroes in the other positions

in the �rst column.
3) Create a 1 in the next row in the leftmost possible column without using

the previous rows.
4) Obtain zeroes below that 1.
5) Repeat steps 3 and 4 until there are no nonzero rows.
Steps 1-5 are called the forward pass and result in a matrix that could be

pretty easily solved using back substitution. To make it easier, however, we will
do a backward pass to get more zeroes.
6) Working upward, beginning with the last nonzero row, add multiples of

each row to the rows above to create zeroes.
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7) Repeat step 6 until is done on the second row.

The result is a matrix in reduced row echelon form.

De�nition 24 A matrix is said to be in reduced row echelon form if all of the
following are satis�ed:

1. The rows containing all zeroes are at the bottom (if there are any).

2. The �rst nonzero entry in each row is the only nonzero entry in its column.
(These are called pivots.)

3. The �rst nonzero entry in each row is 1 and it soccurs in a column to the
right of the �rst nonzero entry in the preceding row.

Theorem 25 Let Ax = b be a system of r nonzero equations in n unknowns.
Suppose rankA = rank (Ajb) and (Ajb) is in reduced row echelon form. Then

1. rankA = r

2. Each of the variables that does not appear as a pivot is a free variable,
and the others are determined by solving the equation. In this way, we
can write the solution to Ax = b as s0 +

Pn�r
j=1 tjuj :

As an example, consider0BB@
2 3 1 4 �9j 17
1 1 1 1 �3j 6
1 1 1 2 �5j 8
2 2 2 3 �8j 14

1CCA
which has reduced row echelon form0BB@

1 0 2 0 �2j 3
0 1 �1 0 1j 1
0 0 0 1 �2j 2
0 0 0 0 0j 0

1CCA
Theorem 26 Let A be an m � n matrix of rank r; where r > 0 and let B be
the reduced row echelon form of A: Then:

1. The number of nonzero rows of B is r:

2. B contains columns that look like e1; : : : ; er (and possibly other columns)
where ej is equal to 1 in the jth slot and zero otherwise. We call these
columns bj1 ; : : : ; bjr:

3. The columns of A that are in the same slots as the columns of B corre-
sponding to e1; : : : ; er are linearly independent, i.e., the columns aj1 ; : : : ; ajr
are linearly independent.
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4. if a column k of B is d1e1 + � � � + drer = d1bj1 + � � � + drbjr ; then the
column k of A is d1aj1 + � � �+ drajr (notice the same coe¢ cients).

Proof. The �rst statement is clear since if there are more, then the rank of
B would be less than r; but since there exists an invertible matrix C such that
B = CA; we must have that rankB = rankA = r: The second follows from the
de�nition of reduced row echelon form and the fact that the rank is r: The last
two follow from the fact that the columns satisfy bj = Caj ; so

rX
i=1

dibji =
rX
i=1

diCaji = C
rX
i=1

diaji :

Corollary 27 The reduced row echelon form is unique.

Proof. Exercise

7 Problems

FIS Section 3.4, exercises 2, 3, 5, 6, 9, 10, 12, 14, 15
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