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1 Determinants

1.1 Definitions and main results

Definition 1 Let A = (A;;) € F"*". The determinant det (A) is a scalar
defined recursively as det (A) = A1 if n=1 and if n > 2,

det A = i (—1)1+j Alj det (A1j>
j=1

where flij e Fn=x(n=1) js the matriz obtained from A by deleting the ith row
and jth column. Sometimes det A is denoted as |A|. The scalar (—1)"7 A;jdet (/LJ)

1s called the i, j cofactor.

We note that in the 2 x 2 case, we have

a b
det( . d)—ad—bc.

Theorem 2 The determinant is a linear function of each row if the other rows
are held fized. That is, for any r between 1 and n,

ai ay ay
ar—1 ar—1 Ar—1

det | u+ kv = det U + kdet v
Ar41 Ar41 Ar41

a”ﬂ a”ﬂ a’IL

for k a scalar and aj,u,v row vectors.



Note that this tells us how the determinant is affected by one type of ele-
mentary row operation.

Corollary 3 If A has a row of all zeroes, then det A =0

Theorem 4 The determinant can be defined by a cofactor erpansion in any
row, i.e., for any i,

det A = zn: (—1)" Ay det (Ay) .
j=1

Corollary 5 If A has two identical rows, then det A = 0.

Theorem 6 If B is obtained from A by exchanging any two rows, det B =
—det A.

Theorem 7 Let B be obtained from A by adding a multiple of one row to
another. Then det B = det A.

Corollary 8 If A € F"*" has rank A < n, then det A = 0.
Theorem 9 For A € F"*", det (AT) = det A.

Corollary 10 The determinant can be defined by a cofactor expansion in any
column.

Theorem 11 For A, B € F™*" det (AB) = (det A) (det B)

Corollary 12 A matrix A € F™*™ is invertible if and only if det A £ 0. If A

is invertible, det (A™1) = detA'

1.2 Proofs of theorems and corollaries

Proof of Theorem 2. The proof is by induction on n. Clearly this is true for
n = 1. Now suppose it is true for n and let A, B,C € F(»+tD)x(+1) he of the
form

a1 ai ai
Qr—1 Gr—1 Gr—1

A=| u+kv |, B= U , C= v
Ar41 Ar41 Qr41

an an an



Notice that by the inductive hypothesis, det fllj = det Blj + k det C’lj for each
j and also note that if i # r, A;; = B;; = C;; Then if » > 1, then

det A = i (—1)1+j Alj det <Alj)

I
~
L

(—1)1+j Alj (det Blj + kdet élj)

.
Il
—

(—1)1+j Blj det Blj + k Z (—1)1+j Clj det C’lj
Jj=1

[
M=

J

1
=det B + kdet C.

We leave the case of r = 1 as an exercise. ®

Proof of Corollary 3. Exercise. m

Proof of Theorem 4. We do induction on n. The base case is easy. Notice
that since we can expand in any row in flij, we can compute the following if we

let Aij’kg be the matrix obtained by removing the ¢th and kth rows and jth and
fth columns from A.

det A = zn: (—1)1+j Alj det (A1j>

1

=30 Ay (3D DM A det (A ) + ST (SR Ay det (Avja)

<.
|

k=1 k=j+1
n j—1 n n
=SS ) A Agedet (A ) + Z S A Ay det ()
J=1 k=1 =1 kg1
= Z (—1)j+k+i Aqj Ay det (fhj,ik) + Z (—1)”’“%rl Ay Ay, det (Alj)ik)
k<j k>
Similarly,

S (1) Ay det (i)

=1

=

n n

k-1
(—1)i+k Air Z (_1)1+j Ay det (Aik’lj) + Z (_1)1+j71 Ayjdet (1211'1@1]')
j=1

k=1 j=k+1
n k—1 ) ) ~
= (fl)prﬁl€+Z A Ay det ( ik 1]) Z Z +k+l A Ay det (Am,lj)
k=1 j=1 k=1 j—kt1
= (71)1+j+k+i Az’kAlj det (/L‘k,lj) + Z (*1)j+k+i Ayk‘AlJ det (A’Zlik,lj) .
j<k >k
]



Proof of Corollary 5. We leave this as an exercise if n < 2. For n > 3, if
we assume rows 1 and j are the same, then we can expand in a row other than
those two rows. We see that each of the determinants in the expansion also has
two identical rows, and by induction these determinants are all zero. Hence the
determinant is zero. m

Proof of Theorem 6. Let the rows of A be labeled a, ..., a,. We see that by
linearity in the rows we get

ai ai ai ai ai
a; + a; a; a; a; a;
0 = det : = det : +det : +det : +det
a; + a; a; a; a; a;
an an an aTL an

The first and last determinants are zero, and so if A’ is gotten by exchanging
rows ¢ and j, then det A +det A’ =0. m
Proof of Theorem 7. By linear in the rows, we get that

a1 a1 aq
a; + ka; a; a;
det : = det + k =detA+0
a; a; a;
an an an

since the last matrix has two of the same rows. m

Proof of Corollary 8. We now know how row operations affect the calculation
of the determinant. If the rank is less than n, we can perform row operations
to get a row of all zeros. This matrix will have determinant zero and the row
operations will all show that the determinant of A is still zero. m

Proof of Theorem 11. We know that if A or B is not rank n, then its deter-
minant is zero. Also, if A or B is not rank n, AB is not rank n (why? Show
L 4 is not onto implies L op is not onto, and Lp is not one-to-one implies L Ap
is not one-to-one). Hence the theorem is true if A or B is not rank n. If both
A and B are rank n, so is AB. Using what we know about how row operations
affect determinants, we can easily see that for any matrix C' and elementary
matrix E, det (EC) = (det E) (det C) . Since any invertible matrix is a prod-
uct of elementary matrices, we can show that det (AB) = det (Ey--- F1B) =
det (Ey--- F1) (det B) = (det A) (det B). m

Proof of Corollary 12. If A is not invertible, then it has rank less than n and
so det A = 0.If A is invertible, then 1 = det J = det (A7 A) = (det A™!) (det A)
sodet AZOand det A™' = 4. m



Proof of Theorem 9. If A is not invertible, then neither is A7, and so
det AT = det A = 0. If A is invertible, then A = E; -- - E}, for some elementary
matrices. We then have that AT = EI ... ET. We now see that det AT =
(det E,CT) -+ -det (ElT) and the result follows from checking that det E] = det E},
for each type of elementary matrix. m

1.3 Remarks on determinants as volumes

If v1,...,v, are vectors in R™, then it turns out that det A, where the rows of
A are the vectors vy, ..., v, is equal to £ the volume of the parelelopiped deter-
mined by the vectors. Notice that this is zero if the vectors form a degenerate
paralellopiped (lower dimensional), which is geometrically the same as saying
the vectors are linearly dependent. The sign has to do with the ordering of the
vectors, and obeys the right hand rule for n = 2,3, and gives a way of defining
an analogue of the right hand rule in higher dimensions. This is called a choice
of orientation and is important in algebraic topology and differential geometry.

2 Problems

e FIS Section 4.1 exercises 2, 3, 6, 7, 10
e FIS Section 4.2 exercises 3, 5-25,27, 29
e FIS Section 4.3 exercises 9-13, 17, 21, 28

3 Characterization of the determinant (Compre-
hensive/Graduate option)

Definition 13 A function § : F™*"™ — F is called an n-linear function if it is
a linear function of each row when the remaining rows are held fized.

Definition 14 An n-linear function 6 : F"*" — F is called alternating if
0 (A) = 0 whenever two rows are identical.

Note that the determinant satisfies both of these properties. In fact, it is
essentially the only such function.

Theorem 15 Let § : F™*™ — F be an alternating n-linear function such that
0(I)=1. Then § (A) = det A for all A € F™>™,

Proof (sketch). If you carefully look at our proofs from the previous section,
all we used is mn-linearity and alternating to get the characterization of what
row operations do. It then follows that § (A) = 0 if rank A < n, and that if
rank A = n, then we can perform row operations to row reduce A to I, and so
0 (I) determines 6 (4). m



Corollary 16 We can write the determinant in the following way

det A = Z sgn (U) a1 ¢(1) """ An o(n)
Uesn

where Sy, is the set of permutations of {1,...,n} and sgn (o) is the sign of the
permutations (—1 to the number of transpositions to form the permutation o).

Proof. It is easy to see that the function on the right satisfy the properties of
Theorem 15. m

4 Problems

e FIS Section 4.5 exercises 16, 18, 19



