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1 Determinants

1.1 De�nitions and main results

De�nition 1 Let A = (Aij) 2 Fn�n: The determinant det (A) is a scalar
de�ned recursively as det (A) = A11 if n = 1 and if n � 2;

detA =

nX
j=1

(�1)1+j A1j det
�
~A1j

�
where ~Aij 2 F (n�1)�(n�1) is the matrix obtained from A by deleting the ith row

and jth column. Sometimes detA is denoted as jAj : The scalar (�1)i+j Aij det
�
~Aij

�
is called the i; j cofactor.

We note that in the 2� 2 case, we have

det

�
a b
c d

�
= ad� bc:

Theorem 2 The determinant is a linear function of each row if the other rows
are held �xed. That is, for any r between 1 and n;

det

0BBBBBBBBBB@

a1
...

ar�1
u+ kv
ar+1
...
an

1CCCCCCCCCCA
= det

0BBBBBBBBBB@

a1
...

ar�1
u
ar+1
...
an

1CCCCCCCCCCA
+ k det

0BBBBBBBBBB@

a1
...

ar�1
v
ar+1
...
an

1CCCCCCCCCCA
for k a scalar and aj ; u; v row vectors.
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Note that this tells us how the determinant is a¤ected by one type of ele-
mentary row operation.

Corollary 3 If A has a row of all zeroes, then detA = 0

Theorem 4 The determinant can be de�ned by a cofactor expansion in any
row, i.e., for any i;

detA =
nX
j=1

(�1)i+j Aij det
�
~Aij

�
:

Corollary 5 If A has two identical rows, then detA = 0:

Theorem 6 If B is obtained from A by exchanging any two rows, detB =
�detA:

Theorem 7 Let B be obtained from A by adding a multiple of one row to
another. Then detB = detA:

Corollary 8 If A 2 Fn�n has rankA < n; then detA = 0:

Theorem 9 For A 2 Fn�n; det
�
AT
�
= detA:

Corollary 10 The determinant can be de�ned by a cofactor expansion in any
column.

Theorem 11 For A;B 2 Fn�n; det (AB) = (detA) (detB)

Corollary 12 A matrix A 2 Fn�n is invertible if and only if detA 6= 0: If A
is invertible, det

�
A�1

�
= 1

detA :

1.2 Proofs of theorems and corollaries

Proof of Theorem 2. The proof is by induction on n: Clearly this is true for
n = 1: Now suppose it is true for n and let A;B;C 2 F (n+1)�(n+1) be of the
form

A =

0BBBBBBBBBB@

a1
...

ar�1
u+ kv
ar+1
...
an

1CCCCCCCCCCA
; B =

0BBBBBBBBBB@

a1
...

ar�1
u
ar+1
...
an

1CCCCCCCCCCA
; C =

0BBBBBBBBBB@

a1
...

ar�1
v
ar+1
...
an

1CCCCCCCCCCA
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Notice that by the inductive hypothesis, det ~A1j = det ~B1j + k det ~C1j for each
j and also note that if i 6= r; Aij = Bij = Cij Then if r > 1; then

detA =
nX
j=1

(�1)1+j A1j det
�
~A1j

�
=

nX
j=1

(�1)1+j A1j
�
det ~B1j + k det ~C1j

�
=

nX
j=1

(�1)1+j B1j det ~B1j + k
nX
j=1

(�1)1+j C1j det ~C1j

= detB + k detC:

We leave the case of r = 1 as an exercise.
Proof of Corollary 3. Exercise.
Proof of Theorem 4. We do induction on n: The base case is easy. Notice
that since we can expand in any row in ~Aij ; we can compute the following if we
let ~Aij;k` be the matrix obtained by removing the ith and kth rows and jth and
`th columns from A:

detA =
nX
j=1

(�1)1+j A1j det
�
~A1j

�

=
nX
j=1

(�1)1+j A1j

0@j�1X
k=1

(�1)k+i�1Aik det
�
~A1j;ik

�
+

nX
k=j+1

(�1)k+iAik det
�
~A1j;ik

�1A
=

nX
j=1

j�1X
k=1

(�1)j+k+iA1jAik det
�
~A1j;ik

�
+

nX
j=1

nX
k=j+1

(�1)j+k+i+1A1jAik det
�
~A1j;ik

�
=
X
k<j

(�1)j+k+iA1jAik det
�
~A1j;ik

�
+
X
k>j

(�1)j+k+i+1A1jAik det
�
~A1j;ik

�
Similarly,

nX
k=1

(�1)i+k Aik det
�
~Aik

�

=
nX
k=1

(�1)i+k Aik

0@k�1X
j=1

(�1)1+j A1j det
�
~Aik;1j

�
+

nX
j=k+1

(�1)1+j�1A1j det
�
~Aik;1j

�1A
=

nX
k=1

k�1X
j=1

(�1)1+j+k+iAikA1j det
�
~Aik;1j

�
+

nX
k=1

nX
j=k+1

(�1)j+k+iAikA1j det
�
~Aik;1j

�
=
X
j<k

(�1)1+j+k+iAikA1j det
�
~Aik;1j

�
+
X
j>k

(�1)j+k+iAikA1j det
�
~Aik;1j

�
:
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Proof of Corollary 5. We leave this as an exercise if n � 2: For n � 3; if
we assume rows 1 and j are the same, then we can expand in a row other than
those two rows. We see that each of the determinants in the expansion also has
two identical rows, and by induction these determinants are all zero. Hence the
determinant is zero.
Proof of Theorem 6. Let the rows of A be labeled a1; : : : ; an:We see that by
linearity in the rows we get

0 = det

0BBBBBBBBBBB@

a1
...

ai + aj
...

ai + aj
...
an

1CCCCCCCCCCCA
= det

0BBBBBBBBBBB@

a1
...
ai
...
ai
...
an

1CCCCCCCCCCCA
+det

0BBBBBBBBBBB@

a1
...
ai
...
aj
...
an

1CCCCCCCCCCCA
+det

0BBBBBBBBBBB@

a1
...
aj
...
ai
...
an

1CCCCCCCCCCCA
+det

0BBBBBBBBBBB@

a1
...
aj
...
aj
...
an

1CCCCCCCCCCCA
:

The �rst and last determinants are zero, and so if A0 is gotten by exchanging
rows i and j; then detA+ detA0 = 0:
Proof of Theorem 7. By linear in the rows, we get that

det

0BBBBBBBBBBB@

a1
...

ai + kaj
...
aj
...
an

1CCCCCCCCCCCA
= det

0BBBBBBBBBBB@

a1
...
ai
...
aj
...
an

1CCCCCCCCCCCA
+ k

0BBBBBBBBBBB@

a1
...
aj
...
aj
...
an

1CCCCCCCCCCCA
= detA+ 0

since the last matrix has two of the same rows.
Proof of Corollary 8. We now know how row operations a¤ect the calculation
of the determinant. If the rank is less than n; we can perform row operations
to get a row of all zeros. This matrix will have determinant zero and the row
operations will all show that the determinant of A is still zero.
Proof of Theorem 11. We know that if A or B is not rank n; then its deter-
minant is zero. Also, if A or B is not rank n; AB is not rank n (why? Show
LA is not onto implies LAB is not onto, and LB is not one-to-one implies LAB
is not one-to-one). Hence the theorem is true if A or B is not rank n: If both
A and B are rank n; so is AB: Using what we know about how row operations
a¤ect determinants, we can easily see that for any matrix C and elementary
matrix E; det (EC) = (detE) (detC) : Since any invertible matrix is a prod-
uct of elementary matrices, we can show that det (AB) = det (Ek � � �E1B) =
det (Ek � � �E1) (detB) = (detA) (detB) :
Proof of Corollary 12. If A is not invertible, then it has rank less than n and
so detA = 0: If A is invertible, then 1 = det I = det

�
A�1A

�
=
�
detA�1

�
(detA)

so detA 6= 0 and detA�1 = 1
detA :
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Proof of Theorem 9. If A is not invertible, then neither is AT ; and so
detAT = detA = 0: If A is invertible, then A = E1 � � �Ek for some elementary
matrices. We then have that AT = ETk � � �ET1 : We now see that detAT =�
detETk

�
� � �det

�
ET1
�
and the result follows from checking that detETk = detEk

for each type of elementary matrix.

1.3 Remarks on determinants as volumes

If v1; : : : ; vn are vectors in Rn; then it turns out that detA; where the rows of
A are the vectors v1; : : : ; vn is equal to � the volume of the parelelopiped deter-
mined by the vectors. Notice that this is zero if the vectors form a degenerate
paralellopiped (lower dimensional), which is geometrically the same as saying
the vectors are linearly dependent. The sign has to do with the ordering of the
vectors, and obeys the right hand rule for n = 2; 3; and gives a way of de�ning
an analogue of the right hand rule in higher dimensions. This is called a choice
of orientation and is important in algebraic topology and di¤erential geometry.

2 Problems

� FIS Section 4.1 exercises 2, 3, 6, 7, 10

� FIS Section 4.2 exercises 3, 5-25,27, 29

� FIS Section 4.3 exercises 9-13, 17, 21, 28

3 Characterization of the determinant (Compre-
hensive/Graduate option)

De�nition 13 A function � : Fn�n ! F is called an n-linear function if it is
a linear function of each row when the remaining rows are held �xed.

De�nition 14 An n-linear function � : Fn�n ! F is called alternating if
� (A) = 0 whenever two rows are identical.

Note that the determinant satis�es both of these properties. In fact, it is
essentially the only such function.

Theorem 15 Let � : Fn�n ! F be an alternating n-linear function such that
� (I) = 1: Then � (A) = detA for all A 2 Fn�n:

Proof (sketch). If you carefully look at our proofs from the previous section,
all we used is n-linearity and alternating to get the characterization of what
row operations do. It then follows that � (A) = 0 if rankA < n; and that if
rankA = n; then we can perform row operations to row reduce A to I; and so
� (I) determines � (A) :
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Corollary 16 We can write the determinant in the following way

detA =
X
�2Sn

sgn (�) a1 �(1) � � � an �(n)

where Sn is the set of permutations of f1; : : : ; ng and sgn (�) is the sign of the
permutations (�1 to the number of transpositions to form the permutation �).

Proof. It is easy to see that the function on the right satisfy the properties of
Theorem 15.

4 Problems

� FIS Section 4.5 exercises 16, 18, 19
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