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1 Eigenvalues and Eigenvectors

De�nition 1 If V is a �nite dimensional vector space, a linear operator T 2
L (V ) is diagonalizable if there is an ordered basis � for V such that [T ]� is a
diagonal matrix. A square matrix A is diagonalizable if LA is diagonalizable.

This maybe requires some basic examples. Notice that

T (x; y) = (x+ y; 4x+ y)

does not produce a diagonal matrix in the standard basis

[T ]E2 =

�
1 1
4 1

�
but if we consider the basis

� = f(1; 2) ; (1;�2)g

we see that

T (1; 2) = (3; 6) = 3 (1; 2)

T (1;�2) = (�1; 2) = � (1;�2)

so

[T ]� =

�
3 0
0 �1

�
:

Hence T is diagonalizable and so is
�
1 1
4 1

�
:

Notice that the fact that [T ]� is diagonal is equivalent to the fact that
T (v1) = �1v1 for an ordered basis fv1; : : : ; vng ; where �1; : : : ; �n are scalars.
The choice of vi is important here, since if we choose other vectors, T does not
have this simple form (in the above example, T (1; 0) 6= � (1; 0) for any choice
of scalar �). This leads to the notion of eigenvalue and eigenvector.
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De�nition 2 Let T be a linear operator on a vector space V (not necessarily
�nite dimensional). A nonzero vector v 2 V is called an eigenvector of T if
there exists a scalar � such that T (v) = �v: The scalar � is called the eigenvalue
corresponding to the eigenvector v: Let A 2 Fn�n: A nonzero vector v 2 Fnis
called an eigenvector of A if v is an eigenvector of LA; i.e., Av = �v for some
�: The scalar � is called the eigenvalue corresponding to the eigenvector v:

Remark 3 Some older terms for eigenvalue/eigenvector are characteristic value/characteristic
vector and proper value/proper vector.

Theorem 4 A vector v is an eigenvector for a linear operator T 2 L (V ) cor-
responding to eigenvalue � if and only if v 6= 0 and v 2 N (T � �IV ) :

Theorem 5 A linear operator T on a �nite-dimensional vector space V is di-
agonalizable if and only if there exists an ordered basis � for V consisting of
eigenvectors of T: Furthermore, if T is diagonalizable and � is an ordered basis
of eigenvectors of T and D = [T ]� ; then D is a diagonal matrix and the diagonal
entries are the corresponding eigenvalues.

The idea of the proof is essentially the discussion above and is left as an
exercise.

Example 6 Not all matrices have eigenvectors. We can determine rotation by
angle � by left multiplication by the matrix

R� =

�
cos � � sin �
sin � cos �

�
:

If � is not an integer multiple of �; then R� does not take any nonzero vector
to a multiple of itself, and so these matrices have no eigenvectors.

Example 7 Let C1 be the vector space consisting of function R! R with
derivatives of all orders (check this is a vector space subspace of the vector
space of functions R! R). Consider the map T : C1 (R) ! C1 (R) given by
T (f) = f 0: For a function to be an eigenvector, we need that f 0 = �f for some
value of �: There are functions that satisfy this property, namely f� (x) = e�x

is a eigenvector with eigenvalue �: Note that the constant function is an eigen-
vector with eigenvalue 0:

Notice that if v is an eigenvector for a linear operator T with corresponding
eigenvalue �; then T (v) = �v can be written (T � �IV ) v = 0 where IV is the
identity transformation on V: Thus there is a nonzero element of the nullspace
of the linear operator T � �I: For matrices, this allows us to use determinants
to �nd eigenvalues.

Theorem 8 Let A 2 Fn�n: The scalar � is an eigenvalue of A if and only if
det (A� �In) = 0:
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Proof. If � is an eigenvalue, its corresponding eigenvector satis�es (A� �In) v =
0; so thereA��In is not invertible, so det (A� �In) = 0: Similarly, if det (A� �In) =
0; then A��In is not invertible, so there is a nonzero element v in the nullspace
of A� �In; and then Av = �v:
One can replace � in the previous theorem to get a polynomial associated

with a matrix A:

De�nition 9 Let A 2 Fn�n: The polynomial f (t) = det (A� tIn) is called the
characteristic polynomial of A:

Note that the theorem above says that any eigenvalue is a zero of the char-
acteristic polynomial and any zero of the characteristic polynomial is an eigen-
value. We can use this to compute eigenvalues, then eigenvectors, and sometimes
even diagonalize the matrix.
Suppose we have a basis of eigenvectors for a square matrix A, then notice

that if Q has the elements of the basis as its columns, then AQ = QD where D
is the diagonal matrix with the eigenvalues on the diagonal, hence Q�1AQ = D:

Example 10 Consider the matrix

A =

0@ 1 4 5
0 2 6
0 0 3

1A :
The characteristic polynomial is

(1� �) (2� �) (3� �) :

Each must correspond to at least one eigenvector, so we need to calculate

A� I =

0@ 0 4 5
0 1 6
0 0 2

1A
and we see that N (A� I) = span f(1; 0; 0)g : We calculate

A� 2I =

0@ �1 4 5
0 0 6
0 0 1

1A
and so N (A� 2I) = span f(4; 1; 0)g : We calculate

A� 3I =

0@ �2 4 5
0 �1 6
0 0 0

1A
and so

N (A� 3I) = span f(29; 12; 2)g :
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Let�s double check that these are, in fact, eigenvectors0@ 1 4 5
0 2 6
0 0 3

1A0@ 1
0
0

1A =

0@ 1
0
0

1A
0@ 1 4 5
0 2 6
0 0 3

1A0@ 4
1
0

1A =

0@ 8
2
0

1A = 2

0@ 4
1
0

1A
0@ 1 4 5
0 2 6
0 0 3

1A0@ 29
12
2

1A =

0@ 87
36
6

1A = 3

0@ 29
12
2

1A :
One can check that

Q =

0@ 1 4 29
0 1 12
0 0 2

1A
has inverse

Q�1 =

0@ 1 �4 19
2

0 1 �6
0 0 1

2

1A
and 0@ 1 �4 19

2
0 1 �6
0 0 1

2

1A0@ 1 4 5
0 2 6
0 0 3

1A0@ 1 4 29
0 1 12
0 0 2

1A =

0@ 1 0 0
0 2 0
0 0 3

1A
We can see how similar matrices a¤ect the characteristic polynomial.

Proposition 11 If A is similar to B; that is, there exists an invertible matrix
Q such that A = Q�1BQ; then the characteristic polynomials of A and B are
the same.

Proof. Exercise.
Recall that if �; �0 are ordered bases for a �nite-dimensional vector space

V , then there exists and invertible matrix Q such that for any T 2 L (V ) we
have [T ]� = Q

�1 [T ]�0 Q: Thus, we can de�ne the characteristic polynomial of
a linear transformation.

De�nition 12 Let V be a �nite-dimensional vector space and let T 2 L (V ) :
We de�ne the characteristic polynomial of T to be the characteristic polyno-
mial of [T ]� for any basis � of V; i.e., the characteristic polynomial is f (t) =

det
�
[T ]� � �In

�
where n = dimV:

Remark 13 Note that [T ]� � �In = [T � �IV ]� so we could have de�ned it
thus.
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It should be fairly clear from the expansion in cofactors formula that the
characteristic polynomial is, in fact, a polynomial. We can be a bit more precise.

Theorem 14 Let A 2 Fn�n: The characteristic polynomial of A is a polyno-
mial of degree n with leading coe¢ cient (�1)n : Also, A has at most n distinct
eigenvalues.

Proof. Exercise.

2 Problems

� Be sure to read more examples in the book on diagonalizing matrices by
�nding zeroes of the characteristic polynomial and then �nding eigenvec-
tors.

� FIS Section 5.1 exercises 2, 3, 7, 8ab, 9 12, 14, 15, 16, 19-22

3 Diagonalizability

Theorem 15 Let T be a linear operator on a vector space V and let �1; �2; : : : ; �k
be distinct eigenvalues of T: If v1; : : : ; vk are eigenvectors of T such that T (vi) =
�ivi for i = 1; : : : ; k; then fv1; : : : ; vkg is linearly independent.

Proof. Consider a linear combination
kX
i=1

aivi = ~0:

It follows by applying T � �kIV that
k�1X
i=1

ai (�i � �k) vi = ~0:

We can now use this to induct on k: If k = 1; then since v1 6= ~0 (since eigenvectors
are nonzero), fv1g is linearly independent. Now suppose any set of eigenvectors
of distinct eigenvalues that has fewer than k elements is linearly independent.
We see that if

kX
i=1

aivi = ~0

then we can apply T � �kIV to both sides to �nd that
k�1X
i=1

ai (�i � �k) vi = ~0:

Since fv1; : : : ; vk�1g are linearly independent and �i 6= �k; we must have that
a1 = � � � = ak�1 = 0: It then follows that ak = 0 as well.
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Corollary 16 Let V be an n-dimensional vector space and T 2 L (V ) : If T has
n distinct eigenvalues, then T is diagonalizable.

Proof. T has at least one eigenvector for each eigenvalue, yielding a set
fv1; : : : ; vng. By the theorem, this set is linearly independent, and thus a ba-
sis. By a previous theorem, if V has a basis of eigenvectors of T; then T is
diagonalizable.
Note that the converse of the theorem is false; we can have a linear operator

that is diagonalizable that has repeated eigenvalues (for instance, the identity
map).

De�nition 17 A polynomial f (t) in P (F ) splits over F if there are scalars
c; a1; : : : ; an (not necessarily distinct) in F such that

f (t) = c (t� a1) (t� a2) � � � (t� an) :

So basically a polynomial splits if it can be factored with all linear factors.
Note that the �eld is important. For instance, t2+1 does not split over R or Q
but it does split over C since t2 + 1 = (t+ i) (t� i) : Also note that we did not
preclude (t� 1)2 ; which also splits.

Theorem 18 The characteristic polynomial of any diagonalizable linear oper-
ator splits.

Proof. It is clear that if D is a diagonal matrix, then its characteristic poly-
nomial splits. If T is diagonalizable, then there is a basis � such that [T ]� is
diagonal, so the theorem follows.
If we think a bit harder about the proof, we see that it may be possible to

have an eigenvalue repeated when written in diagonal form, and this leads to a
repeated zero in the characteristic polynomial.

De�nition 19 Let � be an eigenvalue of a linear operator or matrix with char-
acteristic polynomial f (t) : The (algebraic) multiplicity of � is the largest positive
integer k such that (t� �)k is a factor of f (t) :

While we have shown that if a transformation is diagonalizable and a diago-
nal representation has a repeated eigenvalue, then their must be a repeated zero
in the characteristic polynomial. It is natural to ask if a transformation whose
characteristic polynomial splits with a repeated eigenvalue must be diagonaliz-
able, but this is false.

Example 20 Consider the matrix

A =

�
0 1
0 0

�
:

Its characteristic polynomial is �2; so it splits. We see that N (A) = span f(1; 0)g ;
which is one-dimensional. It is therefore impossible to have a basis of eigenvec-
tors and so A is not diagonalizable.
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The problem in the last example is that we are unable to �nd a basis of
eigenvectors since there is only one eigenvalue and the nullspace of A � �IV
(where � = 0) is only one-dimensional. This leads to the following de�nition.

De�nition 21 Let T be a linear operator on a vector space V and let � be an
eigenvalue of T: De�ne E� = fx 2 V : T (x) = �xg = N (T � �IV ) : The set E�
is called the eigenspace of T corresponding to the eigenvalue �: Analogously, the
eigenspace of a matrix A is the eigenspace of LA:

Theorem 22 Let T be a linear operator on a �nite-dimensional vector space
V and let � be an eigenvalue of T with multiplicity m: Then 1 � dimE� � m:

Proof. Choose an ordered basis fv1; : : : ; vpg for E�; then extend to a basis �
for V: Then [T ]� will have the block form�

�Ip A
0 B

�
:

It is clear that the characteristic polynomial will look like f (t) = (�� t)p det (B � tI) :
It follows that the multiplicity m is at least as big as p = dimE�: Since � is an
eigenvalue, it has at least one eigenvector so dimE� � 1:

Theorem 23 Let T be a linear operator on a vector space V and let �1; : : : ; �k
be distinct eigenvalues of T: For each i = 1; 2; : : : ; k let Si be a �nite linearly
independent subset of E�i : Then S = S1[S2[ � � �[Sk is a linearly independent
subset of V: [Note: the union should really be more of a concatenation since it
needs to preserve the ordering of the Si.]

Proof. We need some notation to keep track of the vectors in Si and S: Sup-
pose Si = fvi1; : : : ; vinig for each i and that S = fv11; : : : ; v1n1 ; v21; : : : ; vknkg :
Consider scalars aij such that

kX
i=1

niX
j=1

aijvij = 0:

For each i; let wi =
Pni

j=1 aijvij : Note that wi 2 Si and
Pk

i=1 wi = 0: If we
could show that this implies wi = 0 for all i = 1; : : : ; k; then it will follow that
aij = 0 for all i; j (since fvi1; : : : ; vinig is a basis for each i).This is the content
of the following lemma.

Lemma 24 Let T be a linear operator and let �1; : : : ; �p be distinct eigenvalues
of T: For each i = 1; : : : ; p; let vi 2 E�i : If

v1 + � � �+ vp = ~0

then vi = 0 for all i:
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Proof. By Theorem 15 , N =
n
vi : vi 6= ~0

o
is a linearly independent set. Thus,

if N is nonempty, then v1 + � � �+ vp 6= ~0:

Theorem 25 Let T be a linear operator on a �nite-dimensional vector space
V and let �1; : : : ; �k be the distinct eigenvalues of T: then

1. T is diagonalizable if and only if the characteristic polynomial of T splits
and the multiplicity of �i is equal to dimE�i for all i:

2. If T is diagonalizable and �i is an ordered basis for E�i for each i; then
� = �1 [ �2 [ � � � [ �k is an ordered basis for V consisting of eigenvectors
of T:

Proof. If T is diagonalizable, then there is a basis � such that [T ]� takes the
block form

[T ]� =

0BBBB@
�1In1 0 � � � 0

0 �2In2
. . .

...
...

. . .
. . . 0

0 � � � 0 �kInk

1CCCCA :
(Technically, there is a basis such that the matrix is diagonal, but then we can
reorder that basis so that equal eigenvalues are adjacent.) It follows that the
characteristic polynomial of T is (�1 � t)n1 � � � (�k � t)nk where n1; : : : ; nk are
the dimensions of E�1 ; : : : ; E�k :
Now suppose the characteristic polynomial of T splits is equal to (�1 � t)n1 � � � (�k � t)nk

where n1; : : : ; nk are the dimensions of E�1 ; : : : ; E�k : Then by Theorem 23 we
can take bases �i of E�i and the set � = �1 [ � � � [ �k is linearly independent.
Since it has size equal to n1 + � � � + nk = dimV (since this is the degree of
the characteristic polynomial), � must be a basis and in that basis, [T ]� has
the form above and is thus diagonalizable. Note that this proves the second
statement as well.

4 Problems

� Be sure to read the examples in the book on diagonalizing.

� FIS Section 5.2 exercises 2, 3, 6, 7 (diagonalize �rst: see Example 7), 8,
12, 13, 18, 19.
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