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1 Inner product spaces

In this chapter, we will only consider the �elds R and C.

De�nition 1 Let V be a vector space over F = R or C. An inner product on
V is a function V � V ! F; denoted (x; y) ! hx; yi ; such that the following
hold for all x; y; z 2 V and c 2 F :

1. hx+ z; yi = hx; yi+ hz; yi.

2. hcx; yi = c hx; yi :

3. hy; xi = hx; yi where the bar denotes complex conjugation.

4. hx; xi > 0 if x 6= 0:

Here are some observations:

� The �rst two conditions could be called being linear in the �rst component.

� The third condition is called being conjugate symmetric (or symmetric if
F = R).

� Linearity in the �rst component and conjugate symmetry imply linearity
in the second component, and being linear in both components is called
being bilinear.

� Notice that conjugate symmetry implies that hx; xi 2 R even if F = C
since hx; xi = hx; xi:

� The second condition also implies that
D
~0;~0

E
= 0; which together with

the fourth condition is called being positive de�nite.

� From all of this, we could have just speci�ed that h�; �i is bilinear, conjugate
symmetric, and positive de�nite.
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� We often write kvk2 to represent hv; vi : Since kvk2 � 0; it has a unique
positive square root that we call kvk :

Example 2 The �rst example is the dot product for Rn; where if x = (x1; : : : ; xn)
and y = (y1; : : : ; yn) then

hx; yi = x � y =
nX
i=1

xiyi:

Example 3 The standard inner product on Cn is

hx; yi =
nX
i=1

xiyi:

Check the properties.

Example 4 Given any inner product h�; �i ; we can multiply it by a positive real
number r > 0 to get another inner product hx; yi0 = r hx; yi : Note that it would
not be an inner product if r � 0 or r is not a real number.

Example 5 For continuous, real-valued functions on [0; 1] ; there is an inner
product

hf; gi =
Z 1

0

f (t) g (t) dt:

Note that it is important that the functions be continuous to ensure that hf; fi =R 1
0
f (t)

2
dt > 0 if f 6= ~0:

Example 6 Consider the vector space Cn�n: We de�ne the conjugate trans-
pose, or adjoint, A� of a matrix A by specifying the entries as:

(A�)ij = Aji:

We can now de�ne an inner product by

hA;Bi = tr (B�A) :

Let�s check it is an inner product. First, hA+A0; Bi = tr (B� (A+A0)) =
tr (B�A+B�A0) = tr (B�A) + tr (B�A0) = hA;Bi+ hA0; Bi : Also,

hB;Ai = tr (A�B)
hA;Bi = tr

�
B�A

�
= tr (A�B) :

Also,

hA;Ai = tr (A�A) =
X
i

X
j

A�ijAji =
X
j;i

AjiAji =
X
j;i

jAjij2

and so this is nonnegative and equals zero if and only if A = 0:
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De�nition 7 A vector space V together with an inner product is called an inner
product space. If the �eld is C then we call it a complex inner product space,
and if the �eld is R we call it a real inner product space.

The following are basic properties of inner product spaces.

Theorem 8 Let V be an inner product space. Then for x; y; z 2 V and c 2 F
the following statements are true:

1. hx; y + zi = hx; yi+ hx; zi :

2. hx; cyi = �c hx; yi :

3.
D
x;~0

E
=
D
~0; x

E
= 0:

4. hx; xi = 0 if and only if x = ~0:

5. If hx; yi = hx; zi for all x 2 V; then y = z:

Proof. Most of these follow pretty easily. The last one can be shown as follows.
Suppose hx; yi = hx; zi for all x 2 V: Then hx; y � zi = 0 for all x: In particular,
taking x = y � z; we get that hy � z; y � zi = 0: But that implies y � z = ~0:
Note that the �rst two statements in the above theorem are called being

conjugate linear in the second component.
Recall the de�nition of the length, or norm: kxk =

p
hx; xi: This generalizes

the Euclidean norm k(x1; : : : ; xn)k =
p
x21 + � � �+ x2n: Many properties are still

true for inner product spaces:

Theorem 9 Let V be an inner product space over F = R or C. The for x; y 2 V
and c 2 F; the following are true:

1. kcxk = jcj � kxk :

2. kxk = 0 i¤ x = ~0: In general, kxk � 0:

3. (Cauchy-Schwarz inequality) jhx; yij � kxk kyk :

4. (Triangle inequality) kx+ yk � kxk+ kyk :

Proof. We will just prove the last two. Consider x� cy and notice that

0 � kx� cyk2

= hx� cy; x� cyi
= kxk2 � hcy; xi � hx; cyi+ kcyk2

= kxk2 � 2Re �c hx; yi+ jcj2 kyk2 :

Notice that if we take c = hx;yi
kyk2 then

0 � kxk2 � 2 jhx; yij
2

kyk2
+
jhx; yij2

kyk2
= kxk2 � jhx; yij

2

kyk2
;
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which implies the Cauchy-Schwarz inequality.
We can now show

kx+ yk2 = hx+ y; x+ yi
= kxk2 + 2Re hx; yi+ kyk2

� kxk2 + 2 kxk kyk+ kyk2

= (kxk+ kyk)2

since 2a � a2 + b2 = ja+ bij2 and so 2Re hx; yi � jhx; yij � kxk kyk :

De�nition 10 Let V be an inner product space. Vectors x and y in V are
orthogonal (perpendicular) if hx; yi = 0: As subset S � V is orthogonal if any
two distinct vectors in S are orthogonal. A vector x in V is a unit vector if
kxk = 1: A subset S � V is orthonormal if S is orthogonal and consists entirely
of unit vectors.

Note that S = fx1; : : : ; xkg is orthonormal i¤ hxi; xji = �ij : Also note that
we can make an orthonormal set from an orthogonal set by replacing each

vector x by 1
kxkx: This will not change the orthogonality since

D
x
kxk ;

y
kyk

E
=

1
kxkkyk hx; yi since kyk 2 R. We call this process normalizing the set.

Proposition 11 If V is an inner product space and S � V is orthogonal and
nonzero, then S is linearly independent.

Proof. We �rst note that if S is not the set consisting only of zero, then zero
cannot be in S: Suppose a1x1+ � � �+akxk = ~0 for scalars a1; : : : ; ak and vectors
x1; : : : ; xk in S: Then we see that

0 = ha1x1 + � � �+ akxk; xii = ai kxik2

and since kxik2 6= 0; we must have ai = 0. This can be done for all i:

2 Problems

� FIS Section 6.1 exercises 2, 3, 8, 10, 11, 16, 17, 19, 20, 22

3 Orthonormal bases

De�nition 12 Let V be an inner product space. A subset of V is an orthonor-
mal basis for V if it is an ordered basis that is orthonormal.

The standard basis is orthonormal for the usual inner product. So is any
rotation of the standard basis!
Orthonormal bases make it easier to write the coe¢ cients than in any old

basis.
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Theorem 13 Let V be an inner product space and S = fv1; v2; : : : ; vkg be an
orthogonal subset of V consisting of nonzero vectors. If y 2 spanS; then

y =
kX
i=1

hy; vii
hvi; vii

vi:

Proof. Since y 2 spanS; we must have that there exist scalars a1; : : : ; ak such
that

y =
kX
i=1

aivi:

We can now take the inner product with vj for j = 1; : : : ; k and �nd that

hy; vji =
*

kX
i=1

aivi; vj

+

=
kX
i=1

ai hvi; vji

= aj hvj ; vji

and so (since kvjk 6= 0), aj = hy;vji
hvj ;vji :

y =
kX
i=1

hy; vii
hvi; vii

vi:

Note that if S is orthonormal, then the denominators are all 1:
We can always take a linearly independent set and use it to �nd an orthogonal

set with the same span. We do this by considering orthogonal projections of
vectors onto a subspace.

Theorem 14 Let W be a �nite dimensional subspace of the inner product space
V: Then for a vector y 2 V; there is a unique vector u 2 W that minimizes
ky � wk2 for all w 2W:

Proof. Suppose there is a u 2W such that hw; y � ui = 0 for any w 2W: Then
if w 2W (and hence so is u� w),

ky � wk2 = ku+ (y � u)� wk2

= hu� w + (y � u) ; u� w + (y � u)i
= ku� wk2 + hu� w; y � ui+ hy � u; u� wi+ ky � uk2

= ku� wk2 + ky � uk2

� ky � uk2 :

We can do this if W is �nite dimensional using the following theorem.
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De�nition 15 We call the assignment of u the orthogonal projection of y onto
W; denoted u = PW (y) :

It is an important fact that hy � PW (y) ; wi = 0 for all w 2W:

De�nition 16 The orthogonal complement of W; written W? (pronounced �W
perp�), is the set of all vectors v 2 V such that hv; wi for all w 2W .

Note that W? is a vector space.

Proposition 17 W? is a vector space.

Proof. It is straightforward to see that
D
~0; w

E
= 0 for all w 2W; so ~0 2W?: if

v; u 2 W? and c 2 F then hcv + u;wi = c hv; wi = hu;wi = 0 so cv + u 2 W?:

We can construct an orthogonal set from a linearly independent set by start-
ing with the �rst vector and then projecting the next vector into

Theorem 18 Let V be an inner product space and S = fw1; : : : ; wng be a
linearly independent subset of V: De�ne S0 = fv1; : : : ; vng by v1 = w1 and

vk = wk �
k�1X
j=1

hwk; vji
hvj ; vji

vj

for k = 2; : : : ; n: Then S0 is an orthogonal set of nonzero vectors such that
spanS0 = spanS:

Proof. We show inductively that vk+1 is orthogonal to v1; : : : ; vk: It is clear
that

hv2; v1i =
�
w2 �

hw2; v1i
hv1; v1i

v1; v1

�
= hw2; v1i �

hw2; v1i
hv1; v1i

hv1; v1i = 0:

We then can use the inductive hypothesis to assume hvi; vji = 0 for i; j � k and
see that

hvk; vii =
*
wk �

k�1X
j=1

hwk; vji
hvj ; vji

vj ; vi

+

= hwk; vii �
hwk; vii
hvi; vii

hvi; vii = 0:

Thus S0 is orthogonal. Hence S0 is linearly independent and since each element
of S0 is in the span of S; spanS0 � spanS; and hence spanS0 = spanS (since
they have the same dimension).
Note: this process of producing an orthogonal set is called the Gram-Schmidt

process.
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Theorem 19 Suppose that S = fv1; : : : ; vkg is an orthonormal set in a n-
dimensional inner product space V: Then

1. S can be extended to an orthonormal basis fv1; : : : ; vk; vk+1; : : : ; vng for
V:

2. If W = spanS; then S1 = fvk+1; : : : ; vng is an orthonormal basis for W?:

3. If W is any subspace of V; then dimV = dimW + dimW?:

Proof. By the replacement theorem, S can be extended into a basis, and then
the Gram-Schmidt process can be used to turn this into an orthogonal set. Then
normalizing gives an orthonormal set. S1 is clearly a linearly independent subset
ofW?: Since fv1; : : : ; vng is a basis, any vector inW? can be written as a linear
combination of these vectors. However, since w 2 W? satis�es hw; vii = 0 for
i = 1; : : : ; k; w is in the span of S1; hence S1 is a basis. The dimension statement
is clear now that we know that S is a basis for S; S0 is a basis for W?; and
fv1; : : : ; vng is a basis for V:

4 Problems

� FIS Section 6.2 exercises 4, 5, 7, 8, 10, 13, 22.

5 Adjoints and eigenvalues

De�nition 20 Suppose T is a linear operator on an inner product space V: If
T � is a linear operator on V such that

hT (x) ; yi = hx; T � (y)i

for all x; y 2 V; we say T � is the adjoint of T: We read T � as �T star.�

Theorem 21 Let V be a �nite-dimensional inner product space and let T be a
linear operator on V: Then there exists a unique function T � : V ! V that for
all x; y 2 V;

hT (x) ; yi = hx; T � (y)i :

Furthermore, T � is linear and hence the adjoint of T:

In order to prove this theorem, we need to show that every linear map on a
�nite-dimensional vector space can be represented in terms of the inner product.
We will then use this idea to construct the adjoint.

Theorem 22 Let V be a �nite dimensional vector space over F and let g :
V ! F be a linear transformation. Then there exists a unique y 2 V such that
g (x) = hx; yi for all x 2 V:
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Proof. Let � = fv1; : : : ; vng be an orthonormal basis for V: For any x 2 V; we
must have y =

P
bivi for some bi; so in order for g (x) = hx; yi we must have

that
g (vi) = hvi; yi = �bi:

Hence any y that satis�es the equation must have bi = g (vi) (this proves unique-
ness). We now con�rm that y =

P
g (vi)vi satis�es the theorem: if x =

P
aivi

then

hx; yi =
*

nX
i=1

aivi;
nX
j=1

g (vj)vj

+

=
nX
i=1

nX
j=1

aig (vj) hvi; vji

=
nX
i=1

aig (vi) = g (x) :

Proof of Theorem 21. Let � = fv1; : : : ; vng ; be an orthonormal basis for V
and de�ne Ti : V ! F by Ti (x) = hT (x) ; vii : By Theorem 22, there exists a
unique yi 2 V such that Ti (x) = hx; yii ; and so

hT (x) ; vii = hx; yii :

We can thus de�ne a linear tranformation T � by de�ning it on the basis to be
T � (vi) = yi and extending it linearly to a transformation on V: Now, for any
vector y 2 V; y =

P
bivi for some scalars b1; : : : ; bn and we check that

hT (x) ; yi =
D
T (x) ;

X
bivi

E
=
X

�bi hT (x) ; vii

=
X

�bi hx; T � (vi)i

=
X

hx; biT � (vi)i

= hx; T � (y)i :

T � is unique since if there were another linear transformation U satisfying the
properties, then for any y 2 V;

hx; T � (y)i = hT (x) ; yi = hx; U (y)i

must be true for all x 2 V; implying that T � (y) = U (y) : (See 6.1, problem 9.)

Notice that the adjoint works the other way as well:

hx; T (y)i = hT (y) ; xi = hy; T � (x)i = hT � (x) ; yi :
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Note our proof of the existence of an adjoint used a basis, and it turns out
that for a linear operator on an in�nite dimensional vector space, the existence
of an adjoint is not guaranteed. However, most properties we will derive are
true if the adjoint exists (sometimes it does).
Recall that for a matrix A; we denote its conjugate transpose by A� (con-

jugate transpose means we take a transpose and replace each entry with its
complex conjugate). This is related to the adjoint.

Theorem 23 Let V be a �nite dimensional inner product space and � be an
orthonormal basis for V: If T is a linear operator on V; then

[T �]� = [T ]
�
� :

It might help to be clear about the content here. If one writes the matrix
for the adjoint transformation T �, this matrix is the same as the conjugate
transpose of the matrix for the transformation T (provided the basis used in
both cases is orthonormal).
Proof. If we write A = [T ]� and B = [T �]� then by orthonormality we have
that

Bij = hT � (vj) ; vii = hvj ; T (vi)i = hT (vi) ; vji = �Aji:

It follows that B = A�:

Corollary 24 Left multiplication by an n� n matrix A satis�es

LA� = L�A:

Theorem 25 Let V be an inner product space and T;U be linear operators on
V that have an adjoint (this is always true if V is �nite dimensional). Then

1. (T + U)� = T � + U�

2. (cT )� = �cT � for any c 2 F

3. (TU)� = U�T �

4. T �� = T

5. I�V = IV :

Proof. The proofs are pretty straightforward. We prove the �rst and third: for
any x; y 2 V

h(T + U)x; yi = hT (x) + U (x) ; yi
= hT (x) ; yi+ hU (x) ; yi
= hx; T � (y)i+ hx; U� (y)i
= hx; T � (y) + U� (y)i
= hx; (T � + U�) (y)i :
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Also,

hTU (x) ; yi = hT (U (x)) ; yi
= hU (x) ; T � (y)i
= hx;U�T � (y)i :

6 Problems

� FIS Section 6.3 exercises 4, 6, 8, 10, 12, 13, 15

7 Schur�s theorem and the (baby) spectral the-
orem

We would like to understand when there exists an orthonormal basis of eigen-
vectors. We �rst have Schur�s theorem, that says that we can represent a linear
transformation by an upper triangular matrx.

Theorem 26 (Schur) Let T be a linear operator on a �nite dimensional inner
product space V: Suppose the characteristic polynomial of T splits. The there
exists an orthonormal basis � of V such that [T ]� is upper triangular.

The main idea behind the proof is that we can restrict T to a subspace. If
W is a subspace of V and T (W ) � W; then we say that W is T -invariant.
Hence there is a linear operator TW 2 L (W ) that is just TW (x) = T (x) : If W
is T -invariant and � is a basis for V that is an extension of a basis for W; then
[T ]� has block form �

[TW ] �
0 �

�
where the ��s are unknown but generally not zero.
We now see that if z is an eigenvector of T � and if z? = fx 2 V : hx; zi = 0g ;

then z? is T -invariant, i.e.,

hT (y) ; zi = hy; T � (z)i = hy; �zi = �� hy; zi = 0:

Proof. We �rst notice that the characteristic polynomial of T � satis�es

det (T � � �I) = det
�
T � ��I

�
since determinant is invariant under trace. Hence if the characteristic polyno-
mial of T splits, then there is an eigenvector z of T �: Then z? is T -invariant, and
so we can use the inductive hypothesis to show that [T ]� is upper triangular.
This completes the proof.
Notice the following consequence:
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Theorem 27 Suppose T 2 L (V ) for a �nite dimensional inner product space
V: If T is self-adjoint, i.e., T � = T , and its characteristic polynomial splits,
then V has an orthonormal basis of eigenvectors of T:

Proof. Since T = T �; we have that [T �]� = [T ]
�
� : If we choose the basis from

the Schur theorem, [T ]� is upper triangular and [T ]
�
� is lower triangular and

since
[T ]� = [T

�]� = [T ]
�
�

we must have that [T ]� is triangular. Note that we needed that the characteristic
polynomials splits, which is not known for real inner product spaces, so we need
the following lemma to complete the proof.

Lemma 28 Let T be a self-adjoint operator on a �nite dimensional inner prod-
uct space V . Then

1. T has real eigenvalues

2. The characteristic polynomial of T splits.

Proof. If � is an eigenvalue with eigenvector v; then

� hv; vi = hT (v) ; vi = hv; T � (v)i = hv; T (v)i = hv; �vi = �� hv; vi

and so � = �� and � is real. The second statement follows from the fundamental
theorem of algebra if F = C. If F = R then we can consider A = [T ]� for
some basis �; and then consider the linear transformation LA : Cn ! Cn given
by LA (x) = Ax: Since T is self-adjoint, A = A� and hence LA is self-adjoint
and hence has real eigenvalues. Since all polynomials split over the complex
numbers, the characteristic polynomial for LA splits, and since the eigenvalues
are real, the polynomial has real coe¢ cients. The characteristic polynomial for
LA is the same as that for T; and since the eigenvalues are real, that means that
the characteristic polynomial for T splits.

Remark 29 The theorem above is if and only if, actually, for real inner product
spaces. For complex inner product spaces, self-adjoint can be relaxed to normal,
which means that T and T � commute, i.e. TT � = T �T: For a normal operator,
any eigenvector x of T; with eigenvalue �; is an eigenvector for T � since

0 = hTx� �x; Tx� �xi
= hx; T �Txi � � hx; Txi � �� hTx; xi+ j�j2 hx; xi
= hx; TT �xi � � hT �x; xi � �� hx; T �xi+ j�j2 hx; xi
=


T �x� ��x; T �x� ��x

�
and so x is an eigenvector for T � with eigenvalue ��:

8 Problems
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