Chapter Check for Chapter 1

September 16, 2015

1. Let $\mathcal{F}(X, F)$ denote the set of functions from the set X to the field F.

a. Describe the usual vector space structure for $\mathcal{F}(X,F)$ (you do not have to show it is a vector space).

b. Let $x_0 \in X$ and for each $a \in F$, consider the set $S_a = \{f \in \mathcal{F}(X,F) : f(x_0) = a\}$. For which values of a is S_a a subspace? Justify your answer.

c. If X is a finite set, show that the dimension of $\mathcal{F}(X, F)$ is equal to the number of elements in X.

2.

a. Find a basis for
$$\mathbb{R}^3$$
 that contains the vector $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$. Justify your

answer.

b. Is the set
$$\left\{ \begin{pmatrix} 1\\ -1\\ 1 \end{pmatrix}, \begin{pmatrix} 2\\ 2\\ 1 \end{pmatrix}, \begin{pmatrix} 1\\ -5\\ 2 \end{pmatrix} \right\}$$
 a basis for \mathbb{R}^3 ? Why or ot?

why not?

3. (Comprehensive/graduate option only) Consider the subspace $W = \{(t,t,t) \in \mathbb{R}^3 : t \in \mathbb{R}\}$ of \mathbb{R}^3 . Give an explicit basis for \mathbb{R}^3/W . Justify your answer.