Chapter Check for Chapter 1

September 16, 2015

1. Let $\mathcal{F}(X, F)$ denote the set of functions from the set X to the field F.
a. Describe the usual vector space structure for $\mathcal{F}(X, F)$ (you do not have to show it is a vector space).
b. Let $x_{0} \in X$ and for each $a \in F$, consider the set $S_{a}=\left\{f \in \mathcal{F}(X, F): f\left(x_{0}\right)=a\right\}$. For which values of a is S_{a} a subspace? Justify your answer.
c. If X is a finite set, show that the dimension of $\mathcal{F}(X, F)$ is equal to the number of elements in X.
2.

a. Find a basis for \mathbb{R}^{3} that contains the vector $\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$. Justify your answer.
b. Is the set $\left\{\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right),\left(\begin{array}{l}2 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{c}1 \\ -5 \\ 2\end{array}\right)\right\}$ a basis for \mathbb{R}^{3} ? Why or why not?
3. (Comprehensive/graduate option only) Consider the subspace $W=$ $\left\{(t, t, t) \in \mathbb{R}^{3}: t \in \mathbb{R}\right\}$ of \mathbb{R}^{3}. Give an explicit basis for \mathbb{R}^{3} / W. Justify your answer.

