Chapter Check for Chapter 2

October 2, 2015

1. Let $P_{k}(\mathbb{R})$ denote the set of polynomials in one variable of degree at most k with coefficients in \mathbb{R}. Let $Y=\left\{y_{0}, \ldots, y_{k}\right\}$ and recall that $\mathcal{F}(Y, \mathbb{R})$ is the vector space of real-valued functions from Y to \mathbb{R}.
a. Explain why $P_{k}(\mathbb{R})$ and $\mathcal{F}(Y, \mathbb{R})$ are isomorphic without finding an isomorphism (i.e., use a theorem).
b. Find an explicit isomorphism and show it is an isomorphism.
2. Consider the vector spaces \mathbb{R}^{2} and \mathbb{R}^{3} with ordered bases $\beta=\left\{\binom{1}{1},\binom{2}{0}\right\}$ and $\gamma=\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right\}$. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation

$$
T\binom{x}{y}=\left(\begin{array}{c}
x+y \\
x-y \\
2 x
\end{array}\right)
$$

a. Find $[T]_{\beta}^{\gamma}$.
b. Describe $N(T)$ and $R(T)$.
c. If E_{2} and E_{3} denote the standard bases of \mathbb{R}^{2} and \mathbb{R}^{3}, find the change of coordinates matrices P taking E_{2} to β and Q taking γ to E_{3}. Compute $Q[T]_{\beta}^{\gamma} P$ and compare to $[T]_{E_{2}}^{E_{3}}$.
3. (Comprehensive/graduate option only) The space F^{n} acts on F^{n} by left multiplication (as in matrix multiplication), in the following way: for each $v \in F^{n}$, define $f_{v}: F^{n} \rightarrow F$ by

$$
f_{v}(x)=v^{T} x
$$

where v^{T} denotes the transpose of v (so v^{T} is a row vector). Show that the map $F^{n} \rightarrow\left(F^{n}\right)^{*}$ given by $v \rightarrow f_{v}$ is an isomorphism.

