Chapter Check for Chapter 2

October 2, 2015

1. Let $P_k(\mathbb{R})$ denote the set of polynomials in one variable of degree at most k with coefficients in \mathbb{R} . Let $Y = \{y_0, \ldots, y_k\}$ and recall that $\mathcal{F}(Y, \mathbb{R})$ is the vector space of real-valued functions from Y to \mathbb{R} .

a. Explain why $P_k(\mathbb{R})$ and $\mathcal{F}(Y,\mathbb{R})$ are isomorphic without finding an isomorphism (i.e., use a theorem).

b. Find an explicit isomorphism and show it is an isomorphism.

2. Consider the vector spaces \mathbb{R}^2 and \mathbb{R}^3 with ordered bases $\beta = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \end{pmatrix} \right\}$

and $\gamma = \left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\0 \end{pmatrix} \right\}$. Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be the linear transformation

nation

$$T\left(\begin{array}{c}x\\y\end{array}\right) = \left(\begin{array}{c}x+y\\x-y\\2x\end{array}\right).$$

- a. Find $[T]^{\gamma}_{\beta}$.
- b. Describe N(T) and R(T).

c. If E_2 and E_3 denote the standard bases of \mathbb{R}^2 and \mathbb{R}^3 , find the change of coordinates matrices P taking E_2 to β and Q taking γ to E_3 . Compute $Q[T]^{\gamma}_{\beta}P$ and compare to $[T]^{E_3}_{E_2}$.

3. (Comprehensive/graduate option only) The space F^n acts on F^n by left multiplication (as in matrix multiplication), in the following way: for each $v \in F^n$, define $f_v : F^n \to F$ by

$$f_v\left(x\right) = v^T x,$$

where v^T denotes the transpose of v (so v^T is a row vector). Show that the map $F^n \to (F^n)^*$ given by $v \to f_v$ is an isomorphism.