Chapter Check for Chapters 3 and 4

November 3, 2015

1. Consider the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 2 & -1 & 3 & 1 \\
2 & 1 & 2 & -1 & 1 \\
1 & 0 & 0 & 1 & 1
\end{array}\right)
$$

a. Using row and column operations, find invertible matrices P and Q such that $P A Q$ is of the block form

$$
\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right)
$$

for a certain size identity matrix I where the other matrices have all zero entries.
b. Put A in reduced row echelon form.
c. Use the reduced row echelon form of A to find a collection of columns of A that form a basis for the column space.
2. a. Compute the determinant of the matrix

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
2 & 6 & 12 & 9 \\
3 & 6 & 10 & 15 \\
4 & 8 & 12 & 14
\end{array}\right)
$$

by using row operations (Hint: Recall the determinant of an upper triangular matrix).
b. Recall a matrix $A \in F^{n \times n}$ is skew-symmetric if $A^{T}=-A$. If the field is not of characteristic 2 , use the determinant to show that A has rank less than n if n is odd.
3. (Comprehensive/graduate option only) Let $A \in F^{m \times n}$ and $B \in F^{n \times m}$. Show that $\operatorname{det}\left(I_{m}+A B\right)=\operatorname{det}\left(I_{n}+B A\right)$ by showing that

$$
\left(\begin{array}{cc}
I_{m} & -A \\
B & I_{n}
\end{array}\right)=\left(\begin{array}{cc}
I_{m} & 0 \\
B & I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{m} & -A \\
0 & I_{n}+A B
\end{array}\right)=\left(\begin{array}{cc}
I_{m}+B A & -A \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{m} & 0 \\
B & I_{n}
\end{array}\right)
$$

and using properties of determinants. [This is called Sylvester's determinant theorem.]

