Chapter Check for Chapters 3 and 4

November 3, 2015

1. Consider the matrix

	(1	2	$^{-1}$	3	1 `	١
A =	2	1	2	-1	1].
	$\setminus 1$	0	0	1	1	/

a. Using row and column operations, find invertible matrices P and Q such that PAQ is of the block form

$$\left(\begin{array}{cc}I&0\\0&0\end{array}\right)$$

for a certain size identity matrix ${\cal I}$ where the other matrices have all zero entries.

b. Put A in reduced row echelon form.

c. Use the reduced row echelon form of A to find a collection of columns of A that form a basis for the column space.

2. a. Compute the determinant of the matrix

1	1	2	3	4	
	2	6	12	9	
	3	6	10	15	
	4	8	12	14]

by using row operations (Hint: Recall the determinant of an upper triangular matrix).

b. Recall a matrix $A \in F^{n \times n}$ is skew-symmetric if $A^T = -A$. If the field is not of characteristic 2, use the determinant to show that A has rank less than n if n is odd.

3. (Comprehensive/graduate option only) Let $A \in F^{m \times n}$ and $B \in F^{n \times m}$. Show that det $(I_m + AB) = \det (I_n + BA)$ by showing that

$$\begin{pmatrix} I_m & -A \\ B & I_n \end{pmatrix} = \begin{pmatrix} I_m & 0 \\ B & I_n \end{pmatrix} \begin{pmatrix} I_m & -A \\ 0 & I_n + AB \end{pmatrix} = \begin{pmatrix} I_m + BA & -A \\ 0 & I_n \end{pmatrix} \begin{pmatrix} I_m & 0 \\ B & I_n \end{pmatrix}$$

and using properties of determinants. [This is called Sylvester's determinant theorem.]