${\cal FINAL}$

Due December 17^{th} , 2015 by 12:30 pm

Your Name: _____

I certify that the work on this final is mine and mine alone (please sign):

Score:

1.	
2a-d.	
3.	
2e. (Comprehensive)	
TCE Extra Credit	3
Total	/100

1. (32pts) Let V and W be finite-dimensional vector spaces of dimension n and m respectively. Let $T: V \to W$ be a linear transformation. Let $\beta = \{v_1, \ldots, v_n\}$ and $\gamma = \{w_1, \ldots, w_m\}$ be bases for V and W respectively.

a. Show that if T is one-to-one, then $T(\beta) = \{T(v_1), \ldots, T(v_n)\}$ is linearly independent.

b. Show that if T is onto, then $T(\beta)$ spans W.

c. Suppose $n \leq m$. Show that there exists a linear map $S: W \to V$ such that $ST = I_V$ if and only if T is one-to-one.

d. If $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$ are inner products on V and W respectively, show that there exists a linear transformation $T^*: W \to V$ such that

$$\langle T(x), y \rangle_{W} = \langle x, T^{*}(y) \rangle_{V}$$

for all $x \in V$ and $y \in W$.

2. (32pts) Let F be a field (you can let it be \mathbb{R} if this is confusing you). Let $X \in F^{n \times n}$ be a matrix of unknowns and define the map $T_v : F^{n \times n} \to F^n$ by $T_v(X) = Xv$ where v is a fixed (known) vector.

a. Show that T_v is a linear transformation.

For parts b, c, and d, let
$$n = 2$$
 and $v = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

b. Find a basis β for the vector space of 2×2 real-valued matrices (you may use one we have already shown is a basis without proof) and write $[T_v]^{E_2}_{\beta}$ where E_2 is the standard basis for \mathbb{R}^2 . **c.** Find the nullspace of T_v .

d. For which vectors $w \in \mathbb{R}^2$ is there a solution to $T_v(X) = w$? What is the dimension of the space of solutions when there is a solution?

e. (Comprehensive option only, worth +10pts). If $v = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$, write $[T_v]_{\beta}^{E_n}$ for some

basis β of $\mathbb{R}^{n \times n}$.

3. (40pts) Consider the space of continuous functions $\mathcal{F}_c([-\pi,\pi],\mathbb{R})$. Let

$$\beta = \{1, \cos x, \sin x, \cos 2x, \sin 2x\}$$

and let $S = \operatorname{span} \beta$. The vector space $\mathcal{F}_{c}([-\pi,\pi],\mathbb{R})$ has an inner product

$$\langle f,g \rangle = \int_{-\pi}^{\pi} f(x) g(x) dx$$

and β is an orthogonal set with respect to that inner product (you can check this).

- **a.** Show that $\dim S = 5$.
- **b.** Show that $\cos^2 x \in S$.
- **c.** Show that the derivative $\frac{d^2}{dx^2}$ is a linear operator on S.

d. Show that $\frac{d^2}{dx^2}$ is self-adjoint on *S*. You may use the orthogonality of β (and the integral facts it implies, such as $\int_{-\pi}^{\pi} \sin x \cos x \, dx = 0$) without proof.

- **e.** Write $\left|\frac{d^2}{dx^2}\right|_{\beta}$ and give the eigenvalues and eigenvectors of $\frac{d^2}{dx^2}$.
- **f.** Give the characteristic polynomial of $\frac{d^2}{dx^2}$ considered as a linear operator $S \to S$.