$$
\begin{gathered}
\mathcal{F I N} \mathcal{A L} \\
\text { Due December } 17^{\text {th }}, 2015 \text { by 12:30 pm }
\end{gathered}
$$

Your Name:

I certify that the work on this final is mine and mine alone (please sign):

Score:

$$
\begin{aligned}
& 1 . \\
& 2 \mathrm{a}-\mathrm{d} . \\
& 3 . \\
& \text { 2e. (Comprehensive) } \square \\
& \text { TCE Extra Credit } \square \\
& \text { Total } 3 \\
& \hline
\end{aligned}
$$

1. (32pts) Let V and W be finite-dimensional vector spaces of dimension n and m respectively. Let $T: V \rightarrow W$ be a linear transformation. Let $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, \ldots, w_{m}\right\}$ be bases for V and W respectively.
a. Show that if T is one-to-one, then $T(\beta)=\left\{T\left(v_{1}\right), \ldots, T\left(v_{n}\right)\right\}$ is linearly independent.
b. Show that if T is onto, then $T(\beta)$ spans W.
c. Suppose $n \leq m$. Show that there exists a linear map $S: W \rightarrow V$ such that $S T=I_{V}$ if and only if T is one-to-one.
d. If $\langle\cdot, \cdot\rangle_{V}$ and $\langle\cdot, \cdot\rangle_{W}$ are inner products on V and W respectively, show that there exists a linear transformation $T^{*}: W \rightarrow V$ such that

$$
\langle T(x), y\rangle_{W}=\left\langle x, T^{*}(y)\right\rangle_{V}
$$

for all $x \in V$ and $y \in W$.
2. (32pts) Let F be a field (you can let it be \mathbb{R} if this is confusing you). Let $X \in F^{n \times n}$ be a matrix of unknowns and define the map $T_{v}: F^{n \times n} \rightarrow F^{n}$ by $T_{v}(X)=X v$ where v is a fixed (known) vector.
a. Show that T_{v} is a linear transformation.

For parts \mathbf{b}, \mathbf{c}, and \mathbf{d}, let $n=2$ and $v=\binom{1}{1}$.
b. Find a basis β for the vector space of 2×2 real-valued matrices (you may use one we have already shown is a basis without proof) and write $\left[T_{v}\right]_{\beta}^{E_{2}}$ where E_{2} is the standard basis for \mathbb{R}^{2}.
c. Find the nullspace of T_{v}.
d. For which vectors $w \in \mathbb{R}^{2}$ is there a solution to $T_{v}(X)=w$? What is the dimension of the space of solutions when there is a solution?
e. (Comprehensive option only, worth +10 pts). If $v=\left(\begin{array}{c}1 \\ \vdots \\ 1\end{array}\right) \in \mathbb{R}^{n}$, write $\left[T_{v}\right]_{\beta}^{E_{n}}$ for some basis β of $\mathbb{R}^{n \times n}$.
3. (40pts) Consider the space of continuous functions $\mathcal{F}_{c}([-\pi, \pi], \mathbb{R})$. Let

$$
\beta=\{1, \cos x, \sin x, \cos 2 x, \sin 2 x\}
$$

and let $S=\operatorname{span} \beta$. The vector space $\mathcal{F}_{c}([-\pi, \pi], \mathbb{R})$ has an inner product

$$
\langle f, g\rangle=\int_{-\pi}^{\pi} f(x) g(x) d x
$$

and β is an orthogonal set with respect to that inner product (you can check this).
a. Show that $\operatorname{dim} S=5$.
b. Show that $\cos ^{2} x \in S$.
c. Show that the derivative $\frac{d^{2}}{d x^{2}}$ is a linear operator on S.
d. Show that $\frac{d^{2}}{d x^{2}}$ is self-adjoint on S. You may use the orthogonality of β (and the integral facts it implies, such as $\int_{-\pi}^{\pi} \sin x \cos x d x=0$) without proof.
e. Write $\left[\frac{d^{2}}{d x^{2}}\right]_{\beta}$ and give the eigenvalues and eigenvectors of $\frac{d^{2}}{d x^{2}}$.
f. Give the characteristic polynomial of $\frac{d^{2}}{d x^{2}}$ considered as a linear operator $S \rightarrow S$.

