Proof of the Replacement Theorem

September 2, 2015

Theorem 1 (Replacement Theorem) Let V be a vector space that is generated by a set G containing exactly n vectors and let L be a linearly independent subset of V containing exactly m vectors. Then $m \leq n$ and there exists a set $H \subseteq G$ containing exactly n - m vectors such that $L \cup H$ generates V.

The proof will be by induction on m.

1. Show the base case m = 0.

2. Suppose the theorem is true for $m \ge 0$, and we will show that it is true for m + 1. Let $L = \{v_1, \ldots, v_{m+1}\}$ be linearly independent. Use the inductive hypothesis to find a set $\{u_1, \ldots, u_{n-m}\}$ such that $\{v_1, \ldots, v_m\} \cup \{u_1, \ldots, u_{n-m}\}$ generate V and also to argue that $m \le n$.

3. Argue that n > m by showing that if m = n, then v_{m+1} is a linear combination from $\{v_1, \ldots, v_m\}$, which it is not by assumption (which assumption?) Conclude $m + 1 \le n$.

4. Using the fact that $v_m \in \text{span}(\{v_1, \ldots, v_m\} \cup \{u_1, \ldots, u_{n-m}\})$, argue that some u_i , say u_1 , can be written as a linear combination of the other vectors. Conclude that $\{v_1, \ldots, v_m, v_{m+1}\} \cup \{u_2, \ldots, u_{n-m}\}$ generates V and the induction is completed if we take $H = \{u_2, \ldots, u_{n-m}\}$.