$\mathcal{EXAM} \ 1$

$October\; 14^{th},\; 2015$

Your Name: _____

Directions:

- a. You may NOT use your book or your notes.
- b. Please ask for extra scrap paper if needed.
- c. Show <u>all</u> work. Unless otherwise noted, a solution without work is worth nothing.
- d. Good Luck!

Score:

1. (15pts) Let V be a vector space (not necessarily finite-dimensional) and let $T: V \to V$ be a linear transformation. For each of the following, determine whether or not the condition implies that T is (i) one-to-one, (ii) onto, and/or (iii) an isomorphism (note: an isomorphism from V to itself is called an automorphism). Give short justifications.

a. R(T) = V.

b. nullity (T) = 0 and V is finite dimensional.

c. V is finite dimensional and nullity $(T) + \operatorname{rank}(T) = \dim V$.

2. (20pts) Let V be a vector space, let $T : V \to V$ be a linear transformation, and let $T_0: V \to V$ denote the zero transformation (that is, $T_0(v) = \vec{0}$ for all $v \in V$). Prove that $T^2 = T_0$ if and only if $R(T) \subseteq N(T)$.

3. (20pts) Consider the linear transformation $L_A : \mathbb{R}^4 \to \mathbb{R}^5$ determined by the matrix

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Let E_n denote the standard basis for \mathbb{R}^n and $\beta = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}$ be an ordered basis of \mathbb{R}^4 .

a. (10pts) Compute $[L_A]_{\beta}^{E_5}$.

b. (10pts) Compute the change of basis matrix Q taking β to E_4 and double check that $[L_A]^{E_6}_{\beta} = AQ.$

4. (25pts)

a. (15pts) Let V_1 and V_2 be subspaces of V, a finite dimensional vector space. Show that $\dim (V_1 + V_2) \leq \dim V_1 + \dim V_2$

b. (10pts) Let $T, U: V \to W$ be linear transformations. Prove that $R(T+U) \subseteq R(T) + R(U)$

5. (20pts) An $n \times n$ matrix is *unit upper triangular* if it has ones along the diagonal and zeroes below the diagonal, so it has the form

$$\begin{pmatrix}
1 & a_{12} & a_{13} & \cdots & a_{1n} \\
0 & 1 & a_{23} & \cdots & a_{2n} \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & 1 & a_{(n-1)n} \\
0 & 0 & \cdots & 0 & 1
\end{pmatrix}$$

a. (5pts) Explain why the set of all unit upper triangular matrices does not form a subspace of the vector space of $n \times n$ matrices.

b. (15pts) Prove that any unit upper triangular matrix is invertible.