$\mathcal{E X} \mathcal{A} \mathcal{M} 1$
October $14^{\text {th }}$, 2015

Your Name:

Directions:

a. You may NOT use your book or your notes.
b. Please ask for extra scrap paper if needed.
c. Show all work. Unless otherwise noted, a solution without work is worth nothing.
d. Good Luck!

Score:

1.
2.

\qquad
\qquad
3.
4.
5.
\qquad
\qquad
\qquad

Total /100

1. (15pts) Let V be a vector space (not necessarily finite-dimensional) and let $T: V \rightarrow V$ be a linear transformation. For each of the following, determine whether or not the condition implies that T is (i) one-to-one, (ii) onto, and/or (iii) an isomorphism (note: an isomorphism from V to itself is called an automorphism). Give short justifications.
a. $R(T)=V$.
b. nullity $(T)=0$ and V is finite dimensional.
c. V is finite dimensional and nullity $(T)+\operatorname{rank}(T)=\operatorname{dim} V$.
2. (20pts) Let V be a vector space, let $T: V \rightarrow V$ be a linear transformation, and let $T_{0}: V \rightarrow V$ denote the zero transformation (that is, $T_{0}(v)=\overrightarrow{0}$ for all $v \in V$). Prove that $T^{2}=T_{0}$ if and only if $R(T) \subseteq N(T)$.
3. (20pts) Consider the linear transformation $L_{A}: \mathbb{R}^{4} \rightarrow \mathbb{R}^{5}$ determined by the matrix

$$
A=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Let E_{n} denote the standard basis for \mathbb{R}^{n} and $\beta=\left\{\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)\right\}$ be an ordered basis of \mathbb{R}^{4}.
a. (10pts) Compute $\left[L_{A}\right]_{\beta}^{E_{5}}$.
b. (10pts) Compute the change of basis matrix Q taking β to E_{4} and double check that $\left[L_{A}\right]_{\beta}^{E_{6}}=A Q$.
4. (25pts)
a. (15pts) Let V_{1} and V_{2} be subspaces of V, a finite dimensional vector space. Show that $\operatorname{dim}\left(V_{1}+V_{2}\right) \leq \operatorname{dim} V_{1}+\operatorname{dim} V_{2}$
b. (10pts) Let $T, U: V \rightarrow W$ be linear transformations. Prove that $R(T+U) \subseteq R(T)+R(U)$
5. (20pts) An $n \times n$ matrix is unit upper triangular if it has ones along the diagonal and zeroes below the diagonal, so it has the form

$$
\left(\begin{array}{ccccc}
1 & a_{12} & a_{13} & \cdots & a_{1 n} \\
0 & 1 & a_{23} & \cdots & a_{2 n} \\
0 & 0 & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & 1 & a_{(n-1) n} \\
0 & 0 & \cdots & 0 & 1
\end{array}\right)
$$

a. (5pts) Explain why the set of all unit upper triangular matrices does not form a subspace of the vector space of $n \times n$ matrices.
b. (15pts) Prove that any unit upper triangular matrix is invertible.

