$\mathcal{E X} \mathcal{A} \mathcal{M} 2$
November $18^{\text {th }}, 2015$

Your Name:

Directions:

a. You may NOT use your book or your notes.
b. Please ask for extra scrap paper if needed.
c. Show all work. Unless otherwise noted, a solution without work is worth nothing.
d. The total possible points are 105, but your score will be counted out of 100 .
e. Good Luck!

Score:

1.
2.
3.
4.
5.

Total \qquad

1. (20pts) Suppose A is a 10×10 matrix with entries in \mathbb{C} and the rank of A is 7 . For the following, determine whether the statement is necessarily true, necessarily false, or there is not enough information to determine if it is true or false. Give short justifications.
a. $\operatorname{det} A=0$
b. The reduced row echelon form of A contains at least one row of zeroes.
c. There exists an invertible matrix Q such that $Q^{-1} A Q$ is diagonal.
d. There exist invertible matrices Q and P such that $Q A P$ is diagonal.
e. A is a product of elementary matrices.
2. (20pts) Consider the matrix $A=\left(\begin{array}{ccccc}1 & -3 & -7 & 5 & -4 \\ 2 & 2 & 2 & 6 & -8 \\ -1 & 2 & 5 & -2 & -1 \\ 1 & 0 & -1 & 1 & 1\end{array}\right)$. Its reduced row echelon
form is $\left(\begin{array}{ccccc}1 & 0 & -1 & 0 & 3 \\ 0 & 1 & 2 & 0 & -1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right)$. Answer the following questions about A :
a. What is the rank of A ?
b. Give a basis for the column space of A.
c. Give a basis for the nullspace of A.
d. Suppose for some vector $b \in \mathbb{R}^{4}, x=\left(\begin{array}{l}1 \\ 2 \\ 3 \\ 4 \\ 5\end{array}\right)$ is a solution to $A x=b$. Find all solutions of $A x=b$ in \mathbb{R}^{5}.

3. (20pts)

a. (10pts) Prove that an upper triangular $n \times n$ matrix is invertible if and only if all its diagonal entries are nonzero.
b. (10pts) Suppose a matrix A is diagonalizable, so there is an invertible matrix Q such that $Q^{-1} A Q$ is diagonal. Show that for each standard basis element e_{i}, the vector $Q e_{i}$ is an eigenvector for A. (Hint: each e_{i} is an eigenvector for the diagonal matrix.)
4. (25pts) Let T be an invertible linear operator on a finite-dimensional vector space V.
a. (15pts) Prove that the scalar λ is an eigenvalue of T if and only if λ^{-1} is an eigenvalue of T^{-1}. Hint: Notice that $T-\lambda I_{V}=-\lambda T\left(T^{-1}-\lambda^{-1} I_{V}\right)$.
b. (10pts) Prove that the eigenspace of T corresponding to λ is the same as the eigenspace of T^{-1} corresponding to λ^{-1} (Note: you may use the result of part a even if you cannot prove it.)
5. (20pts) Recall that an real inner product space is a vector space V over \mathbb{R} together with a product $\langle\cdot, \cdot\rangle$ such that for all $x, y, z \in V$ and $c \in \mathbb{R}$,

- $\langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle$,
- $\langle c x, z\rangle=c\langle x, z\rangle$,
- $\langle x, z\rangle=\langle z, x\rangle$,
- $\langle x, x\rangle>0$ if $x \neq \overrightarrow{0}$.

Consider the vector space $\mathbb{R}^{2 \times 2}$ of two-by-two matrices with real entries and define a product $\langle A, B\rangle=\operatorname{tr}\left(B^{T} A\right)$, where tr denotes the trace (recall that $\left.\operatorname{tr}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=a+d\right)$. Show that this is an inner product space. You may use the following facts without proof:

1. $\mathbb{R}^{2 \times 2}$ is a vector space over \mathbb{R}.
2. The trace is linear: $\operatorname{tr}(c A+B)=c \operatorname{tr}(A)+\operatorname{tr}(B)$ for all $c \in \mathbb{R}$ and $A, B \in \mathbb{R}^{2 \times 2}$.
3. The trace is invariant under transpose: $\operatorname{tr}\left(A^{T}\right)=\operatorname{tr}(A)$ for all $A \in \mathbb{R}^{2 \times 2}$.
4. $(A B)^{T}=B^{T} A^{T}$ for all $A, B \in \mathbb{R}^{2 \times 2}$.
