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1 Approximating the Laplacian on a lattice

Recall that the Laplacian is the operator
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@2

@x2
+
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@y2
+
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acting on functions f (x; y; z) ; with analogues in other dimension. Let�s �rst
consider a way to approximate the one-dimensional Laplacian. Suppose f (x)
is a function and I want to approximate the second derivative d2f

dx2 (x) : We can
take a centered di¤erence approximation to the get this as
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� f (x)� f (x��x)

�x

�
=

1

(�x)
2 [f (x+�x)� f (x) + (f (x��x)� f (x))]

=
1

(�x)
2 [f (x+�x) + f (x��x)� 2f (x)]

Note that if we take �x = 1; then this only depends on the value of the function
at the integer points.
Now consider the graph consisting of vertices on the integers of the real line

and edges between consectutive integers. Give an function f on the vertices, we
can compute the Laplacian as

4f (vi) = f (vi+1) + f (vi�1)� 2f (vi)

1



for any vertex vi: Notice that the Laplacian is an in�nite matrix of the form

4f =

0BBBBBBBB@

� � � � � �
� � � �2 1 0

1 �2 1 0
0 1 �2 1 0

0 1 �2 1 0
0 1 �2 � � �

� � � � � �

1CCCCCCCCA

0BBBBBBBB@

� � �
f (v2)
f (v1)
f (v0)
f (v�1)
f (v�2)
� � �

1CCCCCCCCA
:

Also note that that matrix is exactly equal to the adjacency matrix minus twice
the identity. The number 2 is the degree of each vertex, so we can write the
matrix, which is called the Laplacian matrix, as

L = A�D

where A is the adjacency matrix and D is the diagonal matrix consisting of
degrees (called the degree matrix).
Note that something similar can be done for a two-dimensional grid. We see

that
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f (x+�x; y)� f (x; y)� [f (x; y)� f (x��x; y)]
�x

+
1

�y

f (x; y +�y)� f (x; y)� [f (x; y)� f (x; y ��y)]
�y

=
1

(�x)
2 [f (x+�x; y)� f (x; y) + (f (x��x; y)� f (x; y))]

+
1

(�y)
2 [f (x; y +�y)� f (x; y) + (f (x; y ��y)� f (x; y))]

=
1

(�x)
2 [f (x+�x; y) + (f (x��x; y)� 2f (x; y))]

+
1

(�y)
2 [f (x; y +�y) + (f (x; y ��y)� 2f (x; y))] :

If we let �x = �y = 1; then we get�
@2

@x2
+
@2

@y2

�
f (x; y) � f (x+ 1; y)+f (x� 1; y)+f (x; y + 1)+f (x; y � 1)�4f (x; y) :

Note that on the integer grid, this translates to the sum of the value of f for
the four vertices neighboring the vertex, minus 4 times the value at the vertex.
This is precisely the same as the last time, and we see that this operator can
again be written as

L = A�D:
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In general we will call this matrix the Laplacian matrix. It can be thought of
as a linear operator on functions on the vertices. Sometimes the Laplacian will
denote the negative of this operator (which gives positive eigenvalues instead
of negative ones), and sometimes a slight variation is used in the graph theory
literature.

2 Electrical networks

One �nds applications of the Laplacian in the theory of electrical networks.
Recall that the current through a circuit is proportional to the change in voltage,
and that constant of proportionality is called the conductance (or resistance,
depending on where the constant is placed. Thus, for a wire with conductance
C between points v and w with voltages f (v) and f (w) respectively, the current
from v to w is C (f (v)� f (w)) : Kircho¤�s law says that if we have a network
of wires, each with conductance C; the total current through any given point is
zero. Thus, we get that

C
X

v adjacent to w

(f (w)� f (v)) = 0

which is the same as 4f = 0: Note that if the conductances are di¤erent, then
we get an equation like X

v adjacent to w

cvw (f (w)� f (v)) = 0;

which is quite similar to the Laplacian. Hence we can use the Laplacian to
understand graphs by attaching voltages to some of the vertices and seeing
what happens at the other vertices. This is very much like solving a boundary
value problem for a partial di¤erential equation!

3 Spectrum

This matrix is symmetric, and thus it has a complete set of eigenvalues. The
set of these eigenvalues is called the spectrum of the Laplacian. Notice the
following.

Proposition 1 Let G be a �nite graph. The eigenvalues of the matrix L are all
nonpositive. Moreover, the constant vector ~1 = (1; 1; 1; : : : ; 1) is an eigenvector
with eigenvalue zero.
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Proof. It is clear that ~1 is an eigenvector with eigenvalue 0 since the sum of
the entries in each row must be zero. Now, notice that we can write

vTLv =
X

vi (Lv)i

=
X
i

vi
X
j

Lijvj

=
X
i;j

vi (vj � vi)

=
1

2

24X
i;j

vi (vj � vi) +
X
i;j

vj (vi � vj)

35
= �1

2

X
i;j

(vi � vj)2 � 0:

Now note that if v is an eigenvector of L with eigenvalue �; then Lv = �v; and

vTLv = �vT v = �
X
i

v2i :

Thus we have that

� =
� 1
2

P
i;j (vi � vj)

2P
i v
2
i

� 0:

De�nition 2 The eigenvalues of �L can be arranged 0 = �0 � �1 � �2 �
� � � � �p�1; where p is the order of the graph. The collection (�0; �1; : : : ; �p) is
called the spectrum of the Laplacian.

Remark 3 Sometimes the Laplacian is taken to be D�1=2LD�1=2: If there are
no isolated vertices, these are essentially equivalent.

Remark 4 Note that the Laplacian matrix, much like the adjacency matrix,
depends on the ordering of the vertices and must be considered up to conjugation
by permutation matrices. Since eigenvalues are independent of conjugation by
permutation matrices, the spectrum is an isomorphism invariant of a graph.

Here are some easy facts about the spectrum.

De�nition 5 Let G be a directed (p; q)-graph. The oriented vertex-edge inci-
dence graph is a p � q matrix Q = [qir] ; such that qir = 1 if er = (vi; vj) for
some j and qir = �1 if er = (vj ; vi) for some j:

Proposition 6 The Laplacian matrix L satis�es

�L = QQT
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for any oriented vertex-edge incidence graph (so, given an undirected graph, we
can take any orientation), i.e.,

Lij = �
qX
r=1

qirqjr:

Proof. If i = j; then we see that Lii = �deg vi: Notice that qir is nonzero if vi
is in edge er: Thus

qX
r=1

(qir)
2
= deg vi:

Now for i 6= j; we have that qirqjr = �1 if er = vivj ; giving the result.

Remark 7 This observation can be used to give a di¤erent proof that Lij has
all nonpositive eigenvalues.

Proposition 8 For a graph G of order p;

p�1X
i=0

�i = 2q:

Proof. The sum of the eigenvalues is equal to the trace, which is the sum of
the degrees.
We will be able to use the eigenvalues to determine some geometric properties

of a graph.

4 Connectivity and spanning trees

Recall that �0 = 0; which means that the matrix L is singular and its determi-
nant is zero. Recall the de�nition of the adjugate of a matrix.

De�nition 9 If M is a matrix, the adjugate is the matrix My =
h
My
ij

i
where

My
ij is equal to (�1)

i+j
det

�
M̂ij

�
; where M̂ij is the matrix with the ith row and

jth column removed.

The adjugate has the property that

MMy = (detM) I;

where I is the identity matrix. Applying this to L gives that

LLy = 0:

Now, the p � p matrix L has rank less than p: If it is less than or equal to
p � 2; then all determinants of (p� 1) � (p� 1) submatrices are zero, and
hence Ly = 0: If L has rank p � 1; then it has only one zero eigenvalue, which
must be (1; 1; : : : ; 1)T : Since LLy = 0; all columns of Ly must be a multiple of
(1; 1; : : : ; 1)

T
: But L is symmetric, so that means that Ly must be a multiple of

the matrix of all ones. This motivates the following de�nition.
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De�nition 10 We de�ne t (G) by

t (G) = (�1)i+j det
�
�L̂ij

�
for any i and j (it does not matter since all are the same).

Note that t (G) is the product 1
p�1�2 � � ��p�1: Also note that t (G) is an

integer.
Recall that a spanning tree of G is a subgraph containing all of the vertices

of G and is a tree.

Theorem 11 The number t (G) is equal to the number of spanning trees of G:

Proof. Omitted, for now.
We can apply this, however, as follows.
Example 1, consider the graph K3: Clearly this has Laplacian matrix

L (G) =

0@ 2 �1 �1
�1 2 �1
�1 �1 2

1A :
The number of spanning trees are equal to

det

�
�2 1
1 �2

�
= 3:

It is clear that each spanning tree is given by omitting one edge, so it is clear
there are 3.

Example 2: Consider the following graph.

6



Its Laplacian matrix is

L (G) =

0BBBB@
4 �1 �1 �1 �1
�1 2 �1 0 0
�1 �1 3 �1 0
�1 0 �1 2 0
�1 0 0 0 1

1CCCCA :
The number of spanning trees are equal to

t (G) = det

0BB@
�2 1 0 0
1 �3 1 0
0 1 �2 0
0 0 0 �1

1CCA
= det

0@ 2 �1 0
�1 3 �1
0 �1 2

1A
= 2 (6� 1) + (�2) = 8

One can check directly that it has eight spanning trees.

Corollary 12 �1 6= 0 if and only if G is connected.

Proof. �1 = 0 if and only if t (G) = 0 since t (G) is the product of the eigen-
values �1�2 � � ��p�1 and �1 is the minimal eigenvalue after �0: But t (G) = 0
means that there are no spanning trees, so G is not connected.
Now we can consider the di¤erent components.

De�nition 13 The disjoint union of two graphs G = G1 t G2 is the graph
gotten by taking V (G) = V (G1) t V (G2) and E (G) = E (G1) t E (G2) where
t is the disjoint union of sets.

It is not hard to see that if we number the vertices in G by �rst numbering
the vertices of G1 and then numbering the vertices of G2; that the Laplacian
matrix takes the form

L (G) =

�
L (G1) 0
0 L (G2)

�
:

This means that the eigenvalues of L (G) are the union of the eigenvalues of
L (G1) and L (G2) : This implies the following.

Corollary 14 If �n = 0; then there are at least n+1 connected components of
G:

Proof. Induct on n: We already know this is true for n = 1: Suppose �n = 0:
We know there must be at least n components, since �n = 0 implies �n�1 = 0:
We can then write the matrix L (G) in the block diagonal form with L (Gi)
along the diagonal for some graphs Gi: Since �n = 0; one of these graphs must
have �1 (Gi) = 0: But that means that there is another connected component,
completing the induction.
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