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1 Königsberg bridge problem and Eulerian graphs

See the �gure for the graph corresponding to the Königsberg bridge problem.
The problem is whether one can traverse each edge exactly once.
Here is the answer: No.
Here is the argument. We must start and stop at one of the vertices (possibly

the same one). In particular, there must be at least one of the vertices B,C,D
of degree three which is neither the start nor the stop point. Since it has degree
three, the walker can enter along one edge (the walker does not start there) then
leave by a second edge, then return by the last edge. Then the walker cannot
move again. However, since this means the walker must stop there, we have a
contradiction with the fact that we do not stop at that vertex.

De�nition 1 An eulerian circuit is a circuit containing all of the edges and
vertices of the (multi-)graph. An eulerian trail is trail containing all of the
edges and vertices of the (multi-)graph. A graph which contains an eulerian
circuit is called an eulerian graph and a graph containing an eulerian trail is
called a traversable graph.

Recall that circuits and trails traverse each edge only once (but may traverse
vertices any number of times).
We can characterize both eulerian circuits and trails:
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Theorem 2 A (multi-)graph is eulerian if and only if it is connected and every
vertex has even degree. A (multi-)graph is traversable if and only if it is con-
nected and exactly two vertices have odd degree.

Proof. The two statements are proven almost the same way, so we only prove
the �rst statement. If a graph G is eulerian, then it contains an eulerian circuit
C which begins and ends at a vertex v 2 V (G) : Since the circuit contains all
vertices, there is a trail which connects any two vertices (a subset of the circuit
C), and hence a path (by removing repeated occurrences of any vertices). Thus
G is connected. Now consider a vertex u 6= v: Since the circuit neither begins
nor ends at u; each time u is traversed, there must be an edge entering and an
edge exiting. Thus the edges occur in pairs for each time the circuit visits u
and u must have even degree. For the vertex v; every time it is visited other
than the �rst and last time, there must be an edge entering and an edge exiting.
Add to this one for the initial edge leaving and one for the last edge entering, v
must have even degree too. (Note how this is changed for the second statement
in the theorem).
For the converse, we must show that an eulerian circuit exists if the graph

G is connected and every vertex has an even degree. Pick an initial vertex v
and begin constructing a trail T until it can no longer be extended. The trail
T must be a circuit (i.e., end at v) since if it ended at any other vertex, that
vertex would have odd degree since it has entered and exited an even number of
times and then �nally entered with nowhere to go. Since all vertices have even
degree, T is a circuit. Now we must extend T to be eulerian, i.e., to traverse
all of the edges. Consider the graph G0 gotten by removing the edges in the
circuit T: Notice that G0 also has the property that each vertex has even degree.
If there are no edges in G0; then T is eulerian. Otherwise, there must be an
edge connected to a vertex v0 which is covered by T (since G is connected).
We may now construct a new circuit T 0 in the same way, beginning and ending
at v0: Furthermore, we may append T 0 to the trail T to get a new circuit T 00

which covers more edges. We may then continue the procedure of removing the
edges of T 00 in G until we get an eulerian circuit. We know this procedure will
terminate since we are always adding edges to the trail T and their are a �nite
number of edges in G:
Example 3.2 gives an interesting application of eulerian graphs.

2 Salesman problem and hamiltonian graphs

The traveling salesman problem is the following:
A salesman has to visit each city in his territory. The cities are connected

by certain highways (or even by certain plane routes). Is it possible to plan a
round trip so that he visits each city exactly once?

De�nition 3 A cycle containing all of the vertices of G is called a hamiltonian
cycle. A graph containing a hamiltonian cycle is called a hamiltonian graph.
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It turns out that the problem of �nding a hamiltonian cycle is NP-complete,
which essentially means it is quite di¢ cult. First, here is a condition satis�ed
by a hamiltonian graph:

Theorem 4 If G is a hamiltonian graph, then for any nonempty, proper subset
S � V (G) ; G� S has at most jSj components.

Proof. Let ! (G) denote the number of components of G:We know G contains
a hamiltonian cycle C; and for a cycle, we have that

! (C � S) � jSj ;

since removing one vertex leaves it connected, removing a second produces two
components, removing a third produces another component, etc. However, since
C is a subgraph of G which contains all of the vertices of G; we see that

! (G� S) � ! (C � S)

(since G� S = C � S union some edges).
Example: BM Figure 4.3 is not a hamiltonian graph.
We give one su¢ cient condition for a graph to be hamiltonian.

Theorem 5 Suppose G is a graph of order p such that deg v � p=2 for every
v 2 V (G) : Then G is hamiltonian.

Note that this is certainly not necessary, since we may consider a simple
cycle, in which ever vertex has degree 2 but it is certainly hamiltonian.
Proof. If p = 3; then every vertex has degree larger than 3=2; so G is the
complete graph (a triangle) and that is hamiltonian. Now assume p � 4: Let
P = fu0; u1; : : : ; ukg be a path which visits the most vertices (there may be
several of these paths, but all visit the same number of vertices). We notice the
following:

1. All vertices adjacent to v0 must be in P; since otherwise we could make P
larger. The same is true for vk:

2. We must have k � p=2 + 1 since deg v0 � p=2:

3. There exists a number i; 1 � i � k; such that u0 is adjacent to ui and
uk is adjacent to ui�1: Suppose this were not the case, then for each ui
adjacent to u0 (there are at least p=2 of these), there is another vertex
not adjacent to uk; which means there are p=2 + 1 vertices (including uk)
not adjacent to uk: However, this is impossible since it would mean that
deg uk � p� (p=2 + 1) < p=2:

4. Thus there is a cycle C = fu0; ui; ui+1; : : : ; uk; ui�1; ui�2; : : : ; u0g :
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We claim that C is hamiltonian. Suppose that v 2 V (G) is not in C: We know
that v is not connected to any vertex on C since if it were, then we would have
a path longer than P (using the cycle C). Thus v is not connected to 1+ p=2 of
the vertices, which means that deg v � p� (p=2 + 1) < p=2: A contradiction.
Notice that we only used that deg v + deg v0 � p: Thus we may conclude:

Lemma 6 Suppose G is a (p; q)-graph (NOT multi-graph) such and u; v 2
V (G) are nonadjacent and deg u + deg v � p: Then G is hamiltonian if and
only if G+ uv is hamiltonian.

Proof (Sketch). Certainly if G is hamiltonian, so is G + uv: If G + uv is
hamiltonian, then we take a hamiltonian cycle C: If C does not contain uv; we
are done. If C does, then there is a path P from u = u0 to v = uk in G as in
the proof of the theorem above. We can turn this into a cycle in the same way
as above, and it must be hamiltonian.
This motivates the following de�nition:

De�nition 7 The closure of a (p; q)-graph G; denoted c (G) ; is the graph ob-
tained by recursively joining vertices u; v 2 V (G) which satisfy deg u+deg v � p
until all such pairs are joined by an edge.

Proposition 8 c (G) is well de�ned, i.e., if we had joined vertices in another
order, then we obtain the same graph.

Proof. Let G1 and G2 be two graphs obtained from G as in the de�nition of
the closure. Say G1 is gotten by adding edges fe1; e2; : : : ; eng in that order. Let
ek+1 = uv be the �rst such edge which is not in G2 (if one exists). Then the
graph H = G+ e1 + � � �+ ek must be a subgraph of G2: By the way we de�ned
G1; we must have that

degH u+ degH v � p:
However, since H is a subgraph of G2; we must have

degH u � degG2
u

degH v � degG2
v

and thus
degG2

u+ degG2
v � p:

However, this is a contradiction, since G2 contains no such pairs of vertices.
Thus every edge in G1 is in G2: A similar argument shows that G2 is in G1 and
so G1 = G2:
We now get another condition for a graph to be hamiltonian.

Theorem 9 A graph G is hamiltonian if and only if c (G) is hamiltonian.

Proof. Apply Lemma 6 each time an edge is added to construct the closure.

Corollary 10 A graph with at least 3 vertices is hamiltonian if its closure is
complete.

See BM Figure 4.7, and show it is a hamiltonian graph.
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