Math 443/543 Graph Theory Notes 3: Shortest Paths

David Glickenstein

September 12, 2008

1 Shortest path problems and Dijkstra's algorithm

This section is from BM 1.8 (we will use ϕ instead of w). We consider the shortest path problem: Given a railway network connecting various towns, determine the shortest route between a given pair of towns.

Definition 1 A network (or weighted graph) is a graph G together with a map $\phi: E \rightarrow \mathbb{R}$. The function ϕ may represent the length of an edge, or conductivity, or cross-sectional area or many other things.

Given a network (G, ϕ), we can define the weight of a subgraph $H \subset G$ to be

$$
\phi(H)=\sum_{e \in E(H)} \phi(e)
$$

The problem is then: given two vertices $u_{0}, v_{0} \in V(G)$, find a $u_{0} v_{0}$-path of smallest weight (where we consider the path as a subgraph).

NOTE: We will assume that $\phi(e)>0$ for the remainder of the section, as this simplifies exposition.

Often, we will refer to the the weight of an edge as a length and the value of the smallest weight as the distance. We will present the algorithm of Dijkstra and Whiting-Hillier (found independently). In the sequel, we will assume that ϕ is defined on all pairs of vertices and $\phi(u v)=\infty$ if $u v \notin E(G)$.

Definition 2 The distance between two vertices $u, v \in V(G)$ is equal to

$$
d(u, v)=d_{G}(u, v)=\min \{\phi(P): P \text { is a path from u to } v\}
$$

A path P which attains the minimum is called a shortest path.
We then have the following algorithm, known as Dijkstra's algorithm:

1. Let $\ell\left(u_{0}\right)=0$ and let $\ell(v)=\infty$ for all $v \neq u_{0}$. Let $S_{0}=\left\{u_{0}\right\}$ and let $i=0$.
2. For each $v \in S_{i}^{c}$, replace $\ell(v)$ with

$$
\min _{u \in S_{i}}\{\ell(v), \ell(u)+\phi(u v)\}
$$

3. Compute M to be

$$
M=\min _{v \in S_{i}^{c}}\{\ell(v)\}
$$

and let u_{i+1} be the vertex which attains M.
4. Let $S_{i+1}=S_{i} \cup\left\{u_{i+1}\right\}$.
5. If $i=p-1$, stop. If $i<p-1$, then replace i with $i+1$ and goto step 2 .

Lemma 3 If $v_{0}, v_{1}, \ldots, v_{k}$ is a shortest path, then $v_{0}, v_{1}, \ldots, v_{j}$ is a shortest path for any $j \leq k$.

Proof. If there were a shorter path from v_{0} to v_{j}, then we could replace the current path with a shorter beginning and get a shorter path to v_{k}.

Let's prove that at the termination of the algorithm, $\ell(u)=d\left(u, u_{0}\right)$. We will induct on i. Clearly, this is true for $i=0$. We will make the following inductive hypothesis:

- For every $u \in S_{i}, \ell(u)=d\left(u, u_{0}\right)$.

We have the base case, so we need only prove the inductive step. Suppose it is true for S_{i}. We must show that

$$
d\left(u_{0}, u_{i+1}\right)=\ell\left(u_{i+1}\right) .
$$

Let $P=v_{0}, v_{1}, v_{2}, \cdots, v_{k}$, where $v_{0}=u_{0}$ and $v_{k}=u_{i+1}$, be a $u_{0} u_{i+1}$-path such that

$$
d\left(u_{0}, u_{i+1}\right)=\phi(P)
$$

If $v_{k-1} \in S_{i}$, then the path $P^{\prime}=v_{0}, v_{1}, v_{2}, \cdots, v_{k-1}$ is a shortest path and by the inductive hypothesis $\phi\left(P^{\prime}\right)=\ell\left(v_{k-1}\right)$. Thus

$$
d\left(u_{0}, u_{i+1}\right)=\phi(P)=\ell\left(v_{k-1}\right)+\phi\left(v_{k-1} u_{i+1}\right) \geq \ell\left(u_{i+1}\right)
$$

but since $d\left(u_{0}, u_{i+1}\right)$ is the minimum length path and $\ell\left(u_{i+1}\right)$ is the length of some path, then we must have equality. Thus the inductive step is proven if $v_{k-1} \in S_{i}$.

We now show $v_{k-1} \in S_{i}$. Take the smallest j such that $v_{j} \notin S_{i}$. Then since $P_{j}=v_{0}, v_{1}, \ldots, v_{j}$ is a shortest path, we have, since $v_{j-1} \in S_{i}$, that

$$
\ell\left(v_{j}\right) \leq \ell\left(v_{j-1}\right)+\phi\left(v_{j-1} v_{j}\right)=\phi\left(P_{j}\right) \leq \phi(P) \leq \ell\left(u_{i+1}\right)
$$

since $\ell\left(u_{i+1}\right)=\min \left\{\ell(u): u \in S_{i}^{c}\right\}$, that means that all of the inequalities are equalities and $j=k$ (since $P_{j}=P$) and $v_{k-1} \in S_{i}$. By the previous argument, we are done.

See BM-1.8 for a discussion of the complexity of this algorithm. It turns out to be a good algorithm.

