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1 Planar graphs

The Three Houses and Three Utilities Problem: Given three houses and three
utilities, can we connect each house to all three utilities so that the utility lines
do not cross.
We can represent this problem with a graph, connecting each house to each

utility. We notice that this graph is bipartite:

De�nition 1 A bipartite graph is one in which the vertices can be partitioned
into two sets X and Y such that every edge has one end in X and the other in
Y: The partition (X;Y ) is called a bipartition. A complete bipartite graph is
one such that every vertex of X is joined with ever vertex of Y: The complete
bipartite graph such that the order of X is m and the order of Y is n is denoted
Km;n or K (m;n) :

It is easy to see that the relevant graph in the problem above is K3;3: Now,
we wish to embed this graph in the plane such that no two edges cross except
at a vertex.

De�nition 2 A planar graph is a graph which can be drawn in the plane such
that no two edges cross except at a vertex. A planar graph drawn in the plane
in a way such that no two edges cross except at a vertex is called a plane graph.

Note that it says �can be drawn�not �is drawn.�The problem is that even
if
Thus the problem is whether or not K3;3 is a planar graph.
A planar graph divides the plane into regions. That is, if we remove the

vertices and edges from the plane, there are a number of disconnected pieces,
each of which we call a region. The boundary of a given region is all of the edges
and vertices incident on the region. Notice that there is always one exterior
region which contains all of the unbounded parts of the plane.
Look at examples. Notice that p� q + r = 2: A theorem of Euler says that

this is always true.
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Theorem 3 (Euler�s Theorem) Let G be a connected plane graph with p ver-
tices, q edges, and r regions. Then

p� q + r = 2:

We remark that the number 2 has to do with the plane, and will become
important when we look at topology.
Proof. We induct on q: If q = 0; then we must have p = 1 and r = 1: Thus
p� q + r = 1� 0 + 1 = 2: Now suppose it is true for all graphs with k or fewer
edges. Consider a connected graph G with k + 1 edges. If G is a tree, then we
know that p = q + 1 = k + 2: Furthermore, since there are no cycles in a tree,
r = 1: Thus

p� q + r = (k + 2)� (k + 1) + 1 = 2:

If G is not a tree, then it contains a cycle. Let e 2 G be an edge on a cycle. If
we look at G0 = G� e; it has k edges, and hence p0 = p; q0 = k = q � 1; and by
the inductive hypothesis,

p0 � q0 + r0 = 2:

We see that r0 = r� 1 since removing the edge e joins the regions on either side
of the e: Thus

p� q + r = p0 � (q0 + 1) + (r0 + 1) = 2:

Notice the following corollary:

Corollary 4 Any representation of a planar graph as a plane graph has the
same number of regions.

We can now solve the Problem of Three Houses and Three Utilities.

Theorem 5 The graph K3;3 is not planar.

Proof. Suppose we can represent K3;3 as a plane graph. We know that p = 6
and q = 9; so we need to understand something about r: Since K3;3 is bipartite,
we see that all regions have boundaries with at least 4 edges. Suppose the graph
divides the plane into regions R1; R2; : : : ; Rr: Let B (R) be the number of edges
in the boundary of region R: Consider the number

N =
rX
i=1

B (Ri) :

Since all regions have boundaries with at least 4 edges, we have

N � 4r:

However, since each edge is counted at most twice, we have that

N � 2q = 18:
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Thus
4r � 18

or
r � 4:5:

However, that would mean that

p� q + r = 6� 9 + r � 1:5;

which is impossible if the graph is a plane graph.
One might ask about other non-planar graphs. Another important one is

K5: Here is a theorem which allows us to show this.

Theorem 6 Let G be a connected, planar graph with p vertices and q edges,
with p � 3: Then

q � 3p� 6:

Proof. The proof is quite similar to that of the previous theorem. For p = 3;
we certainly have q � 3: For p � 4; we consider a representation of G as a plane
graph, which gives us r regions, which we denote as R1; R2; : : : ; Rr:We compute
again

N =
rX
i=1

B (Ri) :

This time, we note that B (R) � 3 for each region, and a similar argument give
us that

3r � N � 2q:

Using Euler Theorem, we have that

2 = p� q + r

� p� q + 2
3
q = p� 1

3
q

or
q � 3p� 6:

Corollary 7 The complete graph K5 is not planar.

Proof. We see that K5 has p = 5 and q =
�
5
2

�
= 10; and so

q = 10 > 15� 6 = 3p� 6:
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2 Kuratowski�s theorem

This exposition is mainly from BM-9.5. We saw that K5 and K3;3 are not
planar. It easily follows that any graph containing one of these as a subgraph
(technically, any graph with a subgraph isomorphic to one of these two graphs)
is not planar either. In fact, we can do slightly better by seeing that any graph
with a subgraph isomorphic to a subdivision of K5 or K3;3 is not planar.

De�nition 8 A subdivision of a graph G is a new graph obtained by adding
vertices inside the edges. (The new vertices are all of degree 2.)

It is then clear that :

Proposition 9 If a subdivision of G is planar, then G is planar.

Proof. Given a representation of the subdivision of G as a plane graph, simply
remove the vertices which form the subdivision and we arrive at a plane graph
representation of G:
Stated another way, if G is not planar, then any subdivision is not planar.

Thus any subdivision of K5 and K3;3 is nonplanar.

Proposition 10 If G is planar, then every subgraph is planar.

Proof. Represent G as a plane graph, then the subgraphs are also plane graphs.

Thus if a subgraph of G is a subdivision of K5 or K3;3; then it is not planar,
and thus G is not planar.
Kuratowski�s theorem is the converse, i.e., that if a graph is not planar, then

it contains a subdivision of K5 or K3;3 as a subgraph (technically, contains a
subgraph isomorphic to a subdivision of K5 or K3;3: Proof is in BM.

3 Topology comments

Plane graphs are also graphs on spheres. Using stereographic projection, one
can convert any plane graph to a graph on the sphere with no vertex at the north
pole. Stereographic projection is a map from the sphere except the north pole
to the plane which is a homeomorphism (i.e., a bijection which is continuous
with continuous inverse). The map is de�ned as follows. Consider the plane
in R3 and the xy-plane, R2: For any point P on the sphere, draw a line in R3
from the north pole to that point. It will intersect the plane R2 at a point P 0:
Stereographic projection is the map P ! P 0: With some basic geometry, one
can explicitly write down the map, which is

� (x; y; z) =

�
x

1� z ;
y

1� z

�
:
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The inverse map can also be written explicitly, as

��1 (x; y) =

�
2x

x2 + y2 + 1
;

2y

x2 + y2 + 1
;
x2 + y2 � 1
x2 + y2 + 1

�
:

We have the following:

Proposition 11 Let v 2 V (G) for a planar graph G: There is a plane graph
representing G such that v is in the boundary of the exterior region.

Proof. Take a plane graph representing G: Map it by inverse stereographic
projection to the sphere. Some region contains v in its boundary. Rotate the
sphere so that a point in that region is at the north pole, then use stereographic
projection to project it back to the plane.
Recall that our proof of nonembeddability of K3;3 and K5 used Euler�s the-

orem, which is essentially a theorem about topology. We can replace the use of
Euler�s theorem with a di¤erent topological theorem, the Jordan curve theorem.

Theorem 12 (Jordan curve theorem) A Jordan curve is a curve in the
plane with no self-intersection except that it begins and ends at the same point.
A Jordan curve divides the plane into two regions, each of whose boundary is
the curve itself. One region is unbounded, and called the exterior region and
the other is bounded and called the interior region. Any path between the two
regions must intersect the curve.

We will not prove the theorem here, but show a quick proof that K5 is not
embeddable.
Suppose G were a plane curve isomorphic to K5 and label the vertices

V (G) = fv1; : : : v5g : There is a subgraph de�ned by the cycle C = v1; v2; v3:
This cycle must form a Jordan curve. Thus v4 must be either in the interior or
exterior regions. Suppose it is in the interior region. Then We can consider the
graph G � v5; which consists of the cycle and some edges inside the cycle. If
the vertex v5 is in the exterior region to C; then the edge v4v5 must intersect
C; a contradiction. Otherwise, v5 is inside one of the cycles C12 = v1; v2; v4;
C13 = v1; v3; v4; or C23 = v2; v3; v4: Say it is inside C12: Then the edge v3v5
must intersect C12; a contradiction. Similar arguments deal with the remaining
cases.
Although K5 cannot be embedded in the plane, it can be embedded in the

torus. Show picture. Also, K3;3 can be embedded in a Moebius band. Note
that the torus has Euler characteristic 0 and
We can now rethink the theorem that p � q + r = 2: This is true for plane

graphs, but not for graphs embedded in the torus. The theorem of Euler is that
if a graph divides the torus up into regions each of which is simply connected,
then p � q + r is the same no matter which graph. Simply connected means
that any loop can be deformed into a point. Notice that there are regions of the
torus for which this is not true.

5



4 Scheduling problem

Suppose you wish to assign times for �nal exams. You should schedule them so
that no student has two exams scheduled at the same time. We can represent
this as a graph, where the vertices are the courses and there is an edge if any
student is taking both courses. We will assign colors to the vertices to indicate
the time of the exam. Clearly, we want adjacent edges to have di¤erent colors.
This is called a coloring of the graph.

De�nition 13 A coloring of a graph G is function f : V (G)! S; for some set
S; such that f (v) 6= f (w) if vw 2 E (G) : Often we will choose S � f1; 2; 3; : : :g :
An n-coloring is a coloring where S has n elments.

Remark 14 If G is a (p; q)-graph, then there is always a p-coloring. It is more
interesting to �nd the smallest n for which G has an n-coloring.

De�nition 15 The chromatic number � (G) is the minimal n such that G has
an n-coloring.

Consider G1 and G2 on C-p. 204. We see that G1 has a 5-coloring. However,
clearly we can reduce this. We can �nd a 3-coloring. However, it does not
have a 2-coloring. Graph G2 has a 4-coloring as shown. But no 3-coloring.
Thus � (G1) = 3; � (G2) = 4: We can also see that graph H on C-p. 205 has
� (H) = 4:

Proposition 16 The minimum number of exam periods is given by the chro-
matic number of the graph.

Proof. The chromatic number is realized by a coloring of the graph, and on the
coloring, no two classes which share a student have the same time slot (color).
We just need to show that this is the minimal number of exam periods. Suppose
we have an assignment of exam periods which has fewer time slots. Then these
produce an n-coloring where n < � (G) ; which is a contradiction.
Unfortunately, it is generally very di¢ cult to compute a chromatic number.

Here is a result.

Theorem 17 Let �(G) = max fdeg (v) : v 2 V (G)g : Then

� (G) � 1 + �(G) :

Proof. Induct on the order of G: Suppose p = 1; then �(G) = 0 and � (G) = 1:
This is the base case. For the inductive step, we assume that � (G) � 1+�(G)
for any graph of order P or less. LetG be a graph of order P+1: Let v be a vertex
of maximal degree. G�v has a (1 + � (G� v))-coloring. If deg (v) � �(G� v) ;
then we have �(G) = � (G� v) ; and furthermore there is a free color to use
to color v (since there are �(G� v) + 1 colors available, but only �(G� v)
vertices adjacent to v). If deg v > �(G� v) ; then we can introduce a new color
and color v with that color.
Note, that we actually proved something stronger:

Proposition 18 � (G) � min f1 + �(G) ; 2 + �(G� v)g :
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5 Four color theorem

Consider a map. We wish to color the map in such a way that adjacent countries
have di¤erent colors. The map coloring problem is to �nd the minimal number
of such colors. This can be translated into the question of �nding the chromatic
number of graphs representing the adjacency between countries. The four color
theorem states that

Theorem 19 For any planar graph G; � (G) � 4:

In other words, we can always color a planar graph with 4 colors. This
problem has an interesting history. There were a number of false proofs since
the problem began in 1852, proposed by Francis Guthrie in 1858, and told to
the mathematical community some years later by his brother. It was �nally
solved by Appel and Haken in 1976. Their proof required a large number of
cases (nearly 2000) which were each checked with a computer. Subsequently,
the number of cases has been reduced to around 600, but still too many for
any person to check by hand. Whether this constituted a proof was extremely
controversial in the mathematics community (and, in some instances, is still
controversial).
We will prove that 5 colors is enough, which is much easier.

Lemma 20 Every planar graph G contains a vertex v such that deg v � 5:

Proof. We may assume G has at least 7 vertices (since otherwise this is ob-
vious). The sum of all of the degrees of the vertices is equal to 2q: If every
vertex has degree larger then or equal to 6; then 2q � 6p: On the other hand,
we proved that since G is planar, that q � 3p � 6: Thus we would have that
6p � 2q � 6p� 12; a contradiction.

Theorem 21 For any planar graph G; � (G) � 5:

Proof. We induct on the order of the graph p: If p = 1; then the chromatic
number is 1: Now suppose � (G) � 5 if p � P: Let G be a graph of order
P + 1: By the lemma, there is a vertex v with deg v � 5: By the inductive
hypothesis, G � v has a 5-coloring. If deg v < 4; then we can easily color v to
get a 5-coloring of G; so we may assume that deg v = 5: We may number the
vertices adjacent to v as v1; v2; v3; v4; v5 in a cyclical ordering around v (in the
plane graph representation of G). If all 5 colors are not represented among the
neighbors of v; then we can produce a 5-coloring, so we may assume that v1 has
color 1; v2 has color 2; etc. We will now consider paths in G � v with only 2
colors (the colors must alternate because it is a coloring). First suppose there
is no path from v1 to v3 with only colors 1 and 3: Consider all paths from v1
with only colors 1 and 3 and call this graph H: H is a subgraph of G � v: We
can switch all of the colors in H (1 becomes 3, 3 becomes 1), since any edge
from a vertex in H to a vertex not in H must be between a vertex colored 1
or 3 (in H) and a vertex colored 2, 4,or 5 (not in H). Then v has no neighbor
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colored 1 and so we can color v with 1: However, if v3 2 H; then switching the
colors would not result in a free color. So, suppose v3 2 H: Then there is a cycle
in G given by P followed by v3; v; v1: This cycle has an interior region and an
exterior region, and so v2 is either in the interior region or the exterior region
and v4 is in the other. By the Jordan curve theorem, any path from v2 to v4
must cross this cycle, which means that there is no path from v2 to v4 with all
vertices of color 2 or 4: Now procede as we did in the case there is no path from
v1 to v3 with only colors 1 and 3:
There is an alternate proof. Proceed as before until we know we have v

with degree 5. We claim that we can �nd 2 vertices adjacent to v which are
not adjacent. If not, then there would be a subgraph of G with a subgraph
isomorphic to K5; which would mean there is an plane graph isomorphic to K5:
Let u;w be vertices adjacent to v but not adjacent to each other. We can form
a graph from G � v by identifying u and w; and that graph is planar (we can
turn it into a plane graph by deforming u and w to v along uv and wv). Thus
there is a 5-coloring for this graph, but that gives a 5-coloring on G� v which
has 4 or fewer colors adjacent to v:
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