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1 Pipeline problems

Suppose you have several pipelines arranged in a complicated way (with junc-
tions and multiple input and output). Each pipe has a maximum capacity. We
might ask:

� What is the maximum amount of stu¤ (oil, water, electricity, etc) that
can be moved by the network from the inputs to the outputs?

� Is a certain collection of assigned inputs and outputs able to be attained
by adjustments in the �ow through the pipes?

This work is mostly from BM Chapter 11.

2 Networks and �ows

We will recall some de�nitions for networks and then talk about �ows.

De�nition 1 A network N is a digraph G together with a capacity function
c : E+ (G)! [0;1] and two disjoint sets of vertices X;Y � V (G) : The vertices
X are called the sources and the vertices Y are called the sinks. Vertices in
G� (X [ Y ) are called intermediate vertices and denoted as I:

De�nition 2 We will consider functions f from the directed edges E+ (G) to
some set of numbers (usually positive real or positive integer. We denote

f (K) =
X
e2K

f (e)

if K � E+ (G) : Suppose S � V (G) : Let (S; Sc) denote the set of all directed
edges from vertices in S to vertices in Sc = V (G)� S: We denote

f (S; Sc) = f+ (S)

f (Sc; S) = f� (S) :
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In particular, f+ (v) is the sum of all values of f on arcs from v and f� (v) is
the sum of all values of f on arcs to v: Also note that f+ (S) = f� (Sc) and
f� (S) = f+ (Sc) :

De�nition 3 A �ow through a network N is a function f : E+ (G) ! Z�0
such that

f (e) � c (e) for all e 2 E+ (G)
f� (v) = f+ (v) if v 2 I:

We think of f as specifying the amount of stu¤ �owing through a particular
directed edge in the network. The �rst condition says we cannot exceed the
capacity of any one pipe. The second is a conservation condition, saying that
everything enters and leaves the network via X and Y:

De�nition 4 If S � V (G) and f is a �ow then we de�ne the resultant �ow
out of S relative to f to be

f+ (S)� f� (S) :

Similarly, the resultant �ow into S relative to f is

f� (S)� f+ (S) :

The resultant �ow tells how much net stu¤ leaves S (like a �ux). Note the
following:

Proposition 5 For any S � V (G) and �ow f;

f+ (S)� f� (S) =
X
v2S

�
f+ (v)� f� (v)

�
:

Note that it is not true that

f+ (S) =
X
v2S

f+ (v) :

Proposition 6 The resultant �ow out of X is equal to the resultant �ow into
Y:

Proof. We know that f+ (v) = 0 if v 2 I; and so

f+ (X)� f� (X) =
X
v2X

�
f+ (v)� f� (v)

�
=
X
v2Y c

�
f+ (v)� f� (v)

�
= f+ (Y c)� f� (Y c)
= f� (Y )� f+ (Y ) :
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De�nition 7 The value of f is de�ned as

val f = f+ (X)� f� (X) = f� (Y )� f+ (Y ) :

The value tells how much stu¤ is �owing through the network.

De�nition 8 A �ow f on a network N is a maximal �ow if there is no other
�ow on N with larger value.

Thus a maximal �ow is one which transmits the most stu¤ through the
network.

Proposition 9 For any network N; there is a new network N 0 such that X 0 =
fxg ; Y 0 = fyg ; and there is a one-to-one correspondence of �ows f on N and
�ows f 0 on N�such that

val f 0 = val f:

Proof. Let N 0 be the network obtained from N by adding vertices x and y;
arcs from x to each element of X and arcs from each element of Y to y: Give the
new arcs capacity equal to in�nity. Given a �ow f 0 on N 0, there is an obvious
sub�ow f on N: Given a �ow f on N; we can construct the �ow f 0 by setting

f 0 (a) =

8<: f (a) if a 2 E+ (N)
f+ (v)� f� (v) if a = (x; v)
f� (v)� f+ (v) if a = (v; y)

:

We see that val f 0 = val f:
For this reason, we will often con�ne ourselves to networks with a single

source x and a single sink y:

De�nition 10 Let N be a network with a single source x and a single sink y:
A cut in N is a set (S; Sc) of arcs where x 2 S and y 2 Sc:

Show examples (Figure 11.4, for instance).

De�nition 11 The capacity of a cut K is equal to

capK =
X
a2K

c (a) :

A minimum cut is a cut K such that there is no cut K 0 with capK 0 < capK:

A minimum cut is like the �weakest link�in the chain. If one could turn the
network into a linear path from x to y; the minimum cut would be the smallest
capacity in that chain.
The key theorem about maximum �ows and minimum cuts is the following.

Theorem 12 (Max Flow/Min Cut Theorem) If f� is the maximum �ow
and K� is the minimum cut, then

val f� = capK�:
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We will prove this soon, but �rst let�s prove a more modest few things.

Lemma 13 For any �ow f and any cut (S; Sc) in N;

val f = f+ (S)� f� (S) :
Proof. We know that

f+ (x)� f� (x) = val f
and that

f+ (v)� f� (v) = 0
for any v 2 S � x: Thus we get that

val f =
X
v2S

�
f+ (v)� f� (v)

�
= f+ (S)� f� (S) :

Theorem 14 For any �ow f and any cut K = (S; Sc) in N;

val f � capK:
Equality holds only if and only if f (a) = c (a) for all a 2 (S; Sc) and if f (a) = 0
for all a 2 (Sc; S) :
Corollary 15 If f� is the maximum �ow and K� is the minimum cut, then

val f� � capK�:

Note, we have proved one half of the Max Flow/Min Cut Theorem. The
other inequality will be proven later.

Corollary 16 If f is a �ow and K is a cut such that val f = capK; then f is
a maximum �ow and K is a minimum cut.

Proof. We have that

val f � val f� � capK� � capK;
but the assumptions imply that these are all equalities. In particular, f is a
maximum �ow and K is a minimum cut.

Corollary 17 For any �ow f and any cut K = (S; Sc) in N; if f (a) = c (a)
for all a 2 (S; Sc) and if f (a) = 0 for all a 2 (Sc; S) ; then f is a maximum
�ow and K is a minimum cut.

Proof of Theorem 14. We know that

f+ (S) � capK
f� (S) � 0

so

val f = f+ (S)� f� (S)
� capK:

The equality is if f+ (S) = capK and f� (S) = 0; so the second statement
follows.
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3 Proof of Max Flow/Min Cut Theorem

In this section, we will consider the following types of paths (which are di¤erent
from directed paths considered earlier).

De�nition 18 A v0vk+1-semipath is a list v0; a0; v1; a1; v2; a2; v3; : : : ; ak; vk+1
where vi are vertices and ai are arcs such that either ai = (vi; vi+1) or ai =
(vi+1; vi) ; and no vertex is repeated. Arcs of the �rst type are called forward
arcs and arcs of the second type are called reverse arcs.

We note that given a �ow f on a network N together with a semipath P
from x to y; we can produce a new �ow ~f by making

~f (a) =

8<: f (a) + " if a is a forward arc
f (a)� " if a is a reverse arc
f (a) otherwise

;

as long as f (a) + " � c (a) and f (a) � " � 0: The construction is designed to
ensure that f+ (v) = f� (v) if v 2 I:
We will now consider a way to use these semipaths to increase the value of

a �ow. For a xy-path P; de�ne

� (a) =

�
c (a)� f (a) if a is a forward arc in P

f (a) if a is a reverse arc in P

and de�ne
� (P ) = min

a2P
� (v) :

Note that � (a) is how much we can increase the forward �ow or decrease the
backward �ow. We can now choose a new semipath

f̂ (a) =

8<: f (a) + � (P ) if a is a forward arc
f (a)� � (P ) if a is a reverse arc

f (a) otherwise
:

Note that f̂ is a new �ow, since it satis�es the conditions to ensure 0 � f̂ (a) �
c (a) : Also note that

val f̂ = val f + � (P ) :

Theorem 19 A �ow f is a maximum �ow if and only if N contains no xy-
semipaths P with � (P ) > 0:

Proof. If N contains such a semipath P; we have shown how to increase the
value of f; and so f is not a maximum. Now suppose N contains no such
semipaths. We let S be the set of all vertices v such that there is a xv-semipath
Pv such that � (Pv) > 0; together with x: We know that y is not in this set (by
assumption), and so (S; Sc) is a cut. We will now show that each arc in (S; Sc)
satis�es f (a) = c (a) and every arc in (Sc; S) satis�es f (a) = 0: By Corollary,
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17 this would imply that f is a maximum �ow. Now suppose a 2 (S; Sc)
and a = (v; w) : Then There is a xv-path Pv in N such that � (Pv) > 0: if
f (a) < c (a) ; then we could extend Pv to a xw-path, so we must have that
f (a) = c (a) : Similarly, if we have a 2 (Sc; S) and a = (w; v) ; then if f (a) > 0
then we could extend Pv to a xw-semipath. This completes the proof.
Thus, in the process of the proof, we have shown that, given a �ow, we can

construct a maximum �ow by incrementally considering xy-semipaths P with
� (P ) > 0 (these are called f -incremental paths in BM), �nding new �ows f̂ ; and
continuing until there are no such semipaths left. This �ow will be a maximum
and its value will be equal to the minimum cut, also shown in the proof. Thus,
we have proven the Max Flow/Min Cut Theorem.

4 Feasible �ow theorem

Consider a network N: Suppose that for each source x 2 X; we are given a
nonnegative integer � (x) called the supply and for each sink y 2 Y we are given
a nonnegative integer � (y) called the demand.

De�nition 20 A �ow f on N is feasible if

f+ (x)� f� (x) � � (x)

and
f� (y)� f+ (y) � � (y)

for all xi 2 X and yj 2 Y:

In other words, the �ow is feasible if it sends out less than the supply at each
source and receives at least the demand at each sink. We would like natural
conditions on the supply, demand, and network such that a feasible �ow exists.
For the sequel, for S � V; de�ne

� (S) =
X
v2S

� (v)

� (S) =
X
v2S

� (v) :

Theorem 21 There exists a feasible �ow in N if and only if for all S � V;

c (S; Sc) � � (Y \ Sc)� � (X \ Sc) :

Proof. Construct a new network N 0 by:

1. Add two new vertices x and y to N

2. Join x to all xi 2 X by arcs with capacity � (xi)

3. Join all yj 2 Y to y by arcs with capacity � (yj)
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4. Designate x as the source and y as the sink for N 0:

If N 0 has a �ow f 0 such that f 0 (yj ; y) = c0 (yj ; y) = � (yj) for all yj 2 Y; then
restricting to N we get a feasible �ow on N: Clearly, if such a �ow exists, it has
value equal to � (Y ) ; which is equal to the capacity of the cut (N [ fxg ; fyg) ;
and thus it is a maximum �ow. If we knew that (N [ fxg ; fyg) is a minimum
cut, then we would know that the max �ow has this property, and thus there is
a feasible �ow. The property that (N [ fxg ; fyg) is a minimum cut is that for
any subset S � N;

cap (S [ fxg ; Sc [ fyg) � cap (N [ fxg ; fyg) = � (Y )

(note, we think of Sc as the complement in N). We now note that

cap (S [ fxg ; Sc [ fyg) = cap (S; Sc) + cap (fxg ; Sc) + cap (S; fyg)
= cap (S; Sc) + � (X \ Sc) + � (Y \ S) ;

so the condition is

cap (S; Sc) + � (X \ Sc) + � (Y \ S) � � (Y ) ;

or
cap (S; Sc) � � (Y \ Sc)� � (X \ Sc) :

5 Max Flow/Min Cut algorithm

Now we look at an algorithm for �nding the maximum �ow. It is originally due
to Ford-Fulkerson and called the labelling method.
Recall that we wish to �nd xy-semipaths P such that � (P ) > 0: We need a

systematic way of �nding these paths. One method is to construct a tree T of
all paths P of this form starting at x: If y is not in this tree, we know that our
�ow is a max �ow. If y is in the tree, then we can make the �ow larger as in
the proof of the Max Flow/Min Cut Theorem. We then do this and start over.
Here is how we construct the tree T: We make T a labeled tree, meaning

that each vertex v in T has a label ` (v) : ` (v) will be equal to � (Pv) > 0 for the
unique xv-semipath in T:

1. Let ` (x) =1: Let L = fxg ; the set of labeled vertices.

2. If a = (u; v) is an arc such that u is labeled (i.e., u 2 L) and v is not
labeled, then label ` (v) = min f` (u) ; c (a)� f (a)g if this is positive and
add v to L:

3. If a = (v; u) is an arc such that u is labeled and v is not labeled, then
label ` (v) = min f` (u) ; f (a)g if this is positive and add v to L:
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4. Continue to steps 2 and 3 until y is labeled or all labeled vertices have
been scanned and no new vertices may be added to L:

5. If y 2 L; then replace �ow f with f̂ and go to 1:

6. If y =2 L; then the �ow is a maximum.

We note that this produces a tree (since we only add arcs if the new vertex
is not already in the tree). The algorithm is correct by the Max Flow/Min Cut
Theorem. Note that this algorithm is not good, but one can improve it by doing
a breadth-�rst search (adding vertices into a queue and then testing 2 and 3
using the queue. See BM Figure 11.7.
Note that we can use this algorithm to also solve the feasible �ow problem!

Just augment the network as in the proof and if the max �ow meets the demands,
then there is a feasible �ow.

6 Applications

(This is taken from a text by W.D. Wallis) A company has two factories F1 and
F2 producing a commodity sold at two retail outlets M1 and M2: The product
is marketed by four distributors a; b; c; d: Each factory can produce 50 items per
week. The weekly demand atM1 andM2 are 35 units and 50 units respectively.
The distribution network is given below. Can the weekly demands be met?
Picture to be done later.
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