
CHAPTER 2: SMOOTH MAPS

DAVID GLICKENSTEIN

1. Introduction

In this chapter we introduce smooth maps between manifolds, and some impor-
tant concepts.

De�nition 1. A function f :M ! Rk is a smooth function if for each p 2M; there
exists a smooth coordinate neighborhood (U; �) of p such that f� ��1 is smooth.
More generally, we have the following.

De�nition 2. A map F : M ! N is a smooth map if for each point p 2 M
there exist smooth coordinate neighborhoods (U; �) of p and (V;  ) of F (p) such
that F (U) � V and

 � F � ��1 : � (U)! Rn

is smooth. The map
F̂ =  � F � ��1

is called a coordinate representation of F:

Basically, we have that F is smooth if and only if it is smooth in its coordinate
representations. Note that we have to be a bit careful of the condition F (U) � V:
Consider some examples.

Example 1. We can use polar coordinates on R2: The function f (x; y) = x2 + y2

is equal to f̂ (r; �) = r2 in a polar coordinate chart (usually one takes a set such as�
(x; y) 2 R2 : y > 0

	
for the coordinate domain, otherwise one could �nd that the

coordinate chart is not smooth). It follows that f is smooth.

Lemma 3. Let F : M ! N be a map. If for each p 2 M there exists an open
set U such that F jU is continuous, then F is continuous. If for each p 2 M there
exists an open set U such that F jU is smooth, then F is smooth.

Proof. Suppose that for each p 2 M there exists an open set U such that F jU is
continuous. So there is a cover fUpgp2M with this property. Consider an open set
V � N: We note that �

F jUp
��1

(V ) = F�1 (V ) \ Up
so

F�1 (V ) =
[
p

�
F jUp

��1
(V ) ;

which is open.
Suppose that for each p 2M there exists an open set U such that F jU is smooth.

Then if p 2 U such that F jU is smooth, there is a coordinate neighborhood U 0 � U

Date : September 21, 2010.

1



2 DAVID GLICKENSTEIN

of p and V � N of F (p) such that the coordinate representation is smooth. Since
U 0 is open in M; it follows that F is smooth (note that we used F (U 0) � F (U) �
V ). �

Lemma 4. Let M; and N be smooth manifolds and let fU�g be an open cover of
M: Suppose that for each � we are given a smooth map F� : U� ! N such that

F�jU�\U� = F� jU�\U�
Then there is a unique smooth map F :M ! N such that F jU� = F�:

Proof. We can de�ne F (p) = F� (p) if p 2 U�: By the assumption, this is well-
de�ned, i.e., if p 2 U� ; then F� (p) = F� (p) : Since F is smooth in a neighborhood
of each point, it is smooth. Continuous??? �

Lemma 5. Every smooth map between manifolds is continuous.

Proof. We know that smooth maps between subsets of Rn and Rm are continuous.
Suppose F : M ! N is smooth. Thus for each point p 2 M there exist smooth
coordinate neighborhoods (U; �) of p and (V;  ) of F (p) such that  � F � ��1
is smooth. If W � N is open, then W \ F (M) is covered by coordinate charts
f(V�;  �)g�2A such at there exist nonempty open coordinate charts (U�; ��) such
that F (U�) � V� and  � �F ���1� is smooth. SinceW \V� is open,  � (W \ V�) is
open, and since F� =  � �F ���1� is smooth, F�1� ( � (W \ V�)) is open. However,

F�1� ( � (W \ V�)) = ��
�
F�1 (W \ V�)

�
;

so F�1 (W \ V�) is open. Since

F�1 (W ) =
[
�2A

F�1 (W \ V�) ;

we have that F�1 (W ) is open, and since W is arbitrary it follows that F is con-
tinuous. �

De�nition 6. A di¤eomorphismM ! N between smooth n-dimensional manifolds
is a bijective, smooth map with smooth inverse. Two manifolds are di¤eomorphic
if there exists a di¤eomorphism between them.

2. Examples of smooth maps

In this section we present some examples of smooth maps.

Example 2. Consider the inclusion map Sn ! Rn+1: We need to check the coor-
dinate representations, which are of the form�

x1; : : : ; xn
�
!
�
x1; : : : ; xn;�

q
1� jxj2

�
;

with domain the open unit disk. Since the coordinate representations are smooth,
the function is smooth.

Example 3. Consider the quotient map Rn+1 n f0g ! RPn: The coordinate repre-
sentations look like �

x0; : : : ; xn
�
!
�
x1

x0
; : : : ;

xn

x0

�
:

If we restrict to where x0 > 0; we see that this is a smooth map.
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Example 4. Consider the restriction of the previous map Sn ! RPn: The coordi-
nate representation is�

x1; : : : ; xn
�
!
 

x1p
1� jxj

; : : : ;
xnp
1� jxj

!
or �

x0; : : : ; xn�1
�
!
 
x1

x0
; : : : ;

xn�1

x0
;

p
1� jxj
x0

!
:

Example 5. For a product M �N; consider the projection map � :M �N !M:
This map is smooth.

3. Partitions of unity

Partitions of unity are used to glue together two smooth maps in such a way that
the new map is smooth. Note that one can easily glue together continuous maps
to be continuous, but if applied to smooth maps, the new map is rarely smooth.
Consider, for example, the absolute value function.
We need a function that smoothly transitions between the constant function 1

and the constant function 0: To do this, we need a nonzero function with all zero
derivatives at a point. Consider the following function

f (x) =

�
e�1=x if x > 0
0 if x � 0

Lemma 7. The function f : R! R described above is smooth.

Proof. We need to show that the derivatives all exist at x = 0 and are continuous.
Suppose we could show that the right-sided derivatives were zero, i.e.,

lim
x!0+

f (k) (x) = 0

for all k � 0: Since the derivatives from the left are clearly zero, this is su¢ cient to
show that all derivatives are zero.
We have

lim
x!0+

f (0) (x) = lim
x!0+

e�1=x = 0:

Now we will prove by induction that for x > 0;

f (k) (x) =
pk (x)

x2k
e�1=x

for some polynomial pk: This is clearly true for k = 0: Now supposing the formula
for k; we get

f (k+1) (x) =
p0k (x)

x2k
e�1=x � 2kpk (x)

x2k+1
e�1=x � pk (x)

x2k+2
e�1=x

=
x2p0k (x)� 2kxpk (x)� pk (x)

x2(k+1)
e�1=x;

completing the induction. Now we recall that for any integer k;

lim
x!0+

e�1=x

xk
= 0

(this is proved using L�Hospital and induction). It follows that limx!0+ f
(k) (x) =

0: �
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Using f we can construct smooth cuto¤ functions.

Lemma 8. There exists a smooth function h : R! R such that h is identically
zero on (�1; 1]; h is identically one on [2;1); and 0 < h (x) < 1 for h 2 (1; 2) :
Proof. One way to construct such a function is to consider

h (x) =
f (2� x)

f (2� x) + f (x� 1) :

Notice that h (x) � 1 and h � 0 everywhere. if 2�x � 0; i.e., x � 2; then h (x) = 0;
and if x � 1 � 0; i.e., x � 1; then h (x) = 1: Note that the denominator is never
zero, since f (2� x) is positive if x < 2 and f (x� 1) is positive if x > 1: �
De�nition 9. A smooth function as in the lemma is called a cuto¤ function.

The other thing we often need is a bump function.

De�nition 10. Let f : X ! R be a continuous function. The support of f; denoted
supp f is de�ned as the closure of the set of points where f is nonzero, i.e.,

supp f = fx 2 X : f (x) 6= 0g:
The function f is said to be compactly supported if the support is a compact set.

Lemma 11. There exists a smooth function H : Rn! R such that suppH �
B (0; 2) and Hj

B(0;1)
� 1:

Proof. We can take H (x) = h (jxj) : Clearly this is smooth away from 0 since it is
a composition of smooth functions. Notice that HjB(0;1) � 1; so it must be smooth
at 0 as well. �
De�nition 12. Let X be a topological space and let S = fS�g�2A be a collection
of subsets of X. S is said to be locally �nite if each point x 2 X has a neighborhood
that intersects at most �nitely many sets in S.
De�nition 13. Let M be a topological space and let X = fX�g�2A be an open
cover of M: A partition of unity subordinate to X is a collection of continuous
functions f � :M ! Rg�2A such that

(1) 0 �  � (x) � 1 for all � 2 A and all x 2M:
(2) supp � � X�:
(3) The set of supports fsupp �g�2A is locally �nite.
(4)

P
�2A  � (x) = 1 for all x 2M:

Note that it is important that the set is locally �nite so that the sum makes
sense (without any notion of series).

De�nition 14. If  � are all smooth, then we call the collection a smooth partition
of unity.

One key fact is that manifolds admit partitions of unity. We have already intro-
duced a number of the concepts, but the problem is ensuring that the supports are
locally �nite. This will follow from the fact that manifolds are paracompact.

De�nition 15. Let U be an open cover of a topological space X: A re�nement is
another open cover V such that for every V 2 V there exists a U 2 U such that
V � U: The Hausdor¤ space X is paracompact if every open cover has a locally
�nite re�nement.
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The key fact is that paracompact follows from second countable, so every mani-
fold is paracompact.

Lemma 16. Every topological manifold admits a countable, locally �nite cover by
precompact open sets.

Proof. LetM be a manifold. Recall thatM admits a countable basis of precompact
open sets fBig1i=1 : We will now construct a cover U = fUig

1
i=1 such that

(1) Ui is compact.
(2) Ui�1 � Ui if i � 2:
(3) Bi � Ui:

Once we have such a cover, we see that the set V =
�
Vi = Ui+2 n Ui

	1
i=1
[fU1; U2g

is the appropriate cover. Since Vi is a closed subset of Ui+2; which is compact, it
follows that Vi are precompact. Also, we have that Vi\Vj is empty unless ji� jj � 1;
so V is locally �nite. It is clear that[

V 2V
V =

[
U2U

U;

so V is a cover.
To construct U , we proceed inductively. Let U1 = B1: Then U1 satis�es all three

properties. Inductively, let�s suppose we have U1; : : : ; Uk�1 (k � 2 ) satisfying all
three properties. Note that since Uk�1 is precompact, there is a �nite number mk

such that
Uk�1 � B1 [B2 [ � � � [Bmk

:

Set Uk to be

Uk =

max(mk;k)[
i=1

Bi:

This will satisfy all the axioms. �

Now a slightly stronger version of paracompactness.

De�nition 17. An open cover U is regular if
(1) U is countable and locally �nite.
(2) Each Ui 2 U is the domain of a smooth coordinate map �i : Ui ! Rn whose

image is B (0; 3) � Rn:
(3) The (countable) collection fVig still covers M; where Vi = ��1i (B (0; 1)) :

Lemma 18. Let M be a manifold. Then every open cover admits a regular re�ne-
ment. In particular, M is paracompact.

Proof. Let X be an open cover of M and let fVjg be a countable, locally �nite
cover of M by precompact sets guaranteed by Lemma 16. For each p 2 M; there
exists an open neighborhood W 0

p of p that intersects only �nitely many Vj . Denote
by Vp the set of Vj containing p: Now let

Wp =W 0
p \

0@ \
V 2Vp

V

1A :

Note that this is an open set, since Vp is a �nite set. It follows that if p 2 Vi; then
Wp � Vi: Since p 2 Xp for some Xp 2 X , for each p we can considerW 00

p �Wp\Xp
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such that where
�
W 00
p ; �p

�
is a coordinate ball centered at p; choosing �p such that

�p :W
00
p ! B (0; 3) :

Now let
Up = ��1p (B (0; 1)) :

The sets Up cover M , and the sets W 00
p form a re�nement of X with the correct

coordinate map property. We need to restrict to a countable subcover and show
that it is locally �nite. De�ne Notice that the set�

Up : p 2 Vi
	

forms a cover of Vi; and since Vi is compact, there is a �nite subcover
�
Ui;1; : : : ; Ui;k(i)

	
.

This subcover corresponds to a collection ofW 00
p that we denote

n
W 00
i;1; : : : ;W

00
i;k(i)

o
:

We can now take the union of these over all i 2 N, and call it U . This is count-
able (since it is the countable union of �nite sets), a re�nement of X , and has the
appropriate coordinate map conditions.
We still need to show that U is locally �nite. Notice that if W 00

i;k \W 00
i0;k0 ; then

since there are j; j0 such that W 00
i;k � Vj and W 00

i0;k0 � Vj0 ; we must have Vj \ Vj0 ;
Vi \ Vj ; and Vi0 \ Vj0 all nonempty. If we �x i; there are only �nitely many i0 that
satisfy this since fVjg is locally �nite. It follows that U is locally �nite. (Note: this
argument is from the errata on J. Lee�s website.) �

Theorem 19. If M is a smooth manifold and X = fX�g�2A is any open cover of
M; there exists a smooth partition of unity subordinate to X .

Proof. Let fWig be a regular re�nement of X , and let �i : Wi ! B (0; 3) be the
corresponding coordinate maps. By Lemma 11, there is a smooth function H that
is 1 on B (0; 1) and zero outside B (0; 2) : For every i 2 N, let fi : M ! R be the
function

fi (p) =

�
H (�i (p)) if p 2Wi

0 else

These are clearly smooth and equal to one on Ui = ��1i (B (0; 1)) :
Now de�ne

gi (p) =
fi (p)P
i fi (p)

:

The sum in the bottom makes sense because fWig is locally �nite, so the denom-
inator is a �nite sum. Furthermore, since every p is in some Ui; the denominator
is never zero. Note that

P
gi (p) = 1 for all p 2M: Finally, we need to re-index so

that we are indexed by the set A: Every Wi is contained in some X�; so there is a
function a : N!A such that a (i) is the appropriate �: It may be that more than
one i corresponds to the same �; so we need to sum:

�� (p) =
X

i2a�1(�)

gi (p)

(if a�1 (�) = ?; then the sum is zero). Again, there can be only �nitely many
nonzero gi (q) in a neighborhood of p; so the sum is �nite and the function is
smooth. It also follows that the supports are locally �nite for the same reason, thus
f��g is the partition of unity. �

It will follow that bump functions exist.



SMOOTH MAPS 7

De�nition 20. If A �M is a closed subset and U �M is an open set containing
A; a continuous function  : M ! R is called a bump function for A supported in
U if 0 �  (x) � 1 on M;  � 1 on A and supp � U:

Proposition 21. Let M be a smooth manifold. For any closed set A � M and
any open set U containing A; there exists a smooth bump function for A supported
in U:

Proof. Consider the cover fU;M nAg of M: There is a smooth partition of unity
f 0;  1g subordinate to this cover. It is clear that  1 � 0 on A; so  0 � 1 on A
since  0 +  1 � 1: �

Recall the de�nition of a smooth function on a closed set A:

De�nition 22. Let A � M be a closed set. A function F : A ! N is smooth if
for every p 2 A there is a neighborhood W of p and a smooth function ~F :W ! N

such that ~F
���
W\A

= F jW\A :

Lemma 23. Let M be a smooth manifold, and let A �M be a closed subset, and
let f : A! Rk be a smooth function. For any open set U containing A; there exists

a smooth function ~f :M ! Rk such that ~f
���
A
= f and supp ~f � U:

One might be temped to use the smooth bump function b and look at bf: The
problem is that we do not know there is a smooth extenion of f to U; so we cannot
get a smooth function this way. The proof is slightly more involved.

Proof. We know that for each p; there exists a neighborhood Wp and function
~fp :Wp ! Rk with the appropriate properties. We can replace Wp with Wp \U to
ensure Wp � U: The set

fWpgp2A [ fM nAg
forms an open cover, and we can �nd a partition of unity f�pg [ f�0g subordinate
to it. We then de�ne

~f (x) =
X
p2M

�p (x) ~fp (x) :

Since
n
supp ~fp

o
p
is locally �nite, the sum is �nite. Since supp ~fp � Wp � U; we

have that supp ~f � U and ~f is smooth. Finally, for x 2 A; we have
~f (x) = �0 (x) f (x) +

X
p2M

�p (x) ~fp (x) =
h
�0 (x) +

X
�p (x)

i
f (x) = f (x) :

�

De�nition 24. Let M be a topological space. An exhaustion function for M is a
continuous function f :M ! R such that Mc = fx 2M : f (x) � cg is compact for
each c 2 R.

Some popular exhaustion functions are f (x) = jxj2 for Rn and f (x) = 1
1�jxj2

for the open ball of radius 1:

Proposition 25. Every smooth manifold admits a smooth positive exhaustion func-
tion.
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Proof. Let fVjgj2N be a countable open cover of a manifold M by precompact
sets and let f jgj2N be a smooth partition of unity subordinate to fVjg : De�ne
f :M ! R by

f (x) =
1X
j=1

j j (x) :

This sum is �nite (for each x) since the supports are locally �nite, and the function
is smooth. It is positive

f (x) �
1X
j=1

 j (x) = 1:

�


