CHAPTER 3: TANGENT SPACE

DAVID GLICKENSTEIN

1. Tangent space

We shall define the tangent space in several ways. We first try gluing them together. We know vectors in a Euclidean space require a basepoint $x \in U \subset \mathbb{R}^{n}$ and a vector $v \in \mathbb{R}^{n}$. A C^{∞}-manifold consists of a number of pieces of \mathbb{R}^{n} glued together via coordinate charts, so we can define all tangents as follows. Consider what happens during a change of parametrization $\phi: V \rightarrow U$. It will take a vector v to $d \phi(v)$. This motivates the following:

Definition 1. $T^{\text {glue }} M=\bigsqcup_{i}\left(U_{i} \times \mathbb{R}^{n}\right) / \sim$ where for $(x, v) \in U_{i} \times \mathbb{R}^{n},(y, w) \in U_{j} \times$ \mathbb{R}^{n} we have $(x, v) \sim(y, w)$ if and only iff $y=\phi_{j} \phi_{i}^{-1}(x)$ and $w=d\left(\phi_{j} \phi_{i}^{-1}\right)_{x}(v)$.

The nice thing about this definition is it puts things together and gives the vectors in a good way. We define the tangent space at a point $p \in M$ as $T_{p}^{\text {glue }} M=$ $\left\{[p, v]: v \in \mathbb{R}^{n}\right\}$. It is easy to see that $T_{p}^{\text {glue }} M$ is an n-dimensional vector space. It is also easy to see that there is a map $\pi: T^{\text {glue }} M \rightarrow M$ defined by $\pi([p, v])=p$ (since the parts of M are really equivalence classes modulo equivalence. It also makes it clear that $T^{\text {glue }} M$ is a C^{∞} manifold.

We can define tangent spaces in two other ways.
Definition 2. $T_{p}^{\text {path }} M=\{$ paths $\gamma:(-\varepsilon, \varepsilon) \rightarrow M$ such that $\gamma(0)=p\} / \sim$ where $\alpha \sim \beta$ if $\left(\phi_{i} \circ \alpha\right)^{\prime}(0)=\left(\phi_{i} \circ \beta\right)^{\prime}(0)$ for every i such that $p \in U_{i} . T^{\text {path }} M=$ $\bigsqcup_{p \in M} T_{p}^{\text {path }} M$.

This is a more geometric definition. Note that there is a map $\pi: T^{\text {path }} M \rightarrow M$ defined by $\pi(\gamma)=\gamma(0)$.

We shall show that $T^{\text {path }} M$ and $T^{\text {glue }} M$ are equivalent. The maps are

$$
\Phi: T_{p}^{\text {path }} M \rightarrow T_{p}^{\text {glue }} M
$$

defined by

$$
\Phi([\gamma])=\left[\phi_{i} \circ \gamma(0),\left(\phi_{i} \circ \gamma\right)^{\prime}(0)\right]
$$

The inverse map is

$$
\Psi: T^{\text {glue }} M \rightarrow T^{\text {path }} M
$$

defined by

$$
\Psi\left(\left[\phi_{i}(p), v\right]\right)=\left[t \rightarrow \phi_{i}^{-1}\left(\phi_{i}(p)+t v\right)\right] .
$$

It is clear that if well defined, they are inverses of each other. We need to show that Φ and Ψ are well-defined. Clearly Φ is well defined because $\phi_{i} \circ \gamma(0)=$

Date: September 29, 2010.
$\phi_{i} \circ \beta(0),\left(\phi_{i} \circ \gamma\right)^{\prime}(0)=\left(\phi_{i} \circ \beta\right)^{\prime}(0)$ for any $\beta \in[\gamma]$. Also for any $\left(\phi_{j}(p), w\right) \in$ $\left[\phi_{i}(p), v\right]$ must satisfy $d\left(\phi_{i} \circ \phi_{j}^{-1}\right)_{\phi_{j}(p)} v=w$. Notice that

$$
\left\{\phi_{j} \phi_{i}^{-1}\left(\phi_{i}(p)+t v\right)\right\}^{\prime}(0)=d\left(\phi_{j} \circ \phi_{i}^{-1}\right)_{\phi_{i}(p)} v=w=\left(\phi_{j}(p)+t w\right)^{\prime}(0)
$$

The third way is in terms of germs of functions. A germ of a function is an equivalence class of functions.

Definition 3. Germs s_{p} is the set of functions $f \in C^{\infty}\left(U_{f}\right)$ for $p \in U_{f} \subset M$ modulo the equivalence that $[f]=[g]$ iff $f(x)=g(x)$ for all $x \in U_{f} \cap U_{g}$. Note that Germs ${ }_{p}$ are an algebra since $[f]+[g]=[f+g]$ is well-defined, etc.

Definition 4. A derivation of germs is an \mathbb{R}-linear map $X:$ Germs $_{p} \rightarrow \mathbb{R}$ which satisfies

$$
X(f g)=f(p) X(g)+X(f) g(p)
$$

Definition 5. We define $T_{p}^{\text {der }} M$ to be the set of derivations of germs at p.
Proposition 6. Alternately, we may define the $T_{p}^{d e r} M$ to be the set of derivations of smooth functions at p.

Proof. Suppose $X: C^{\infty}(M) \rightarrow \mathbb{R}$ is a derivation at p. Then it determines a derivation of germs in the obvious way. Conversely, suppose $[f]$ is a germ at p. Then there is a representative $f: U \rightarrow \mathbb{R}$, and within that open set is a coordinate ball B centered at p. Taking a smaller ball, we have a compact (closed) coordinate ball B^{\prime} around p within the domain U of f. We can consider the function $x \rightarrow b(x) f(x)$, where b is a smooth bump function supported in U that is one on the ball B^{\prime}. These

This definition is nice because it shows how tangent vectors act on functions. We note derivations are a vector space since

$$
\begin{aligned}
(X+Y)(f g) & =X(f) g(p)+f(p) X(g)+Y(f) g(p)+f(p) Y(g) \\
& =(X+Y)(f) g(p)+f(p)(X+Y)(g)
\end{aligned}
$$

A good example of a germ on $U \subset \mathbb{R}^{n}$ is $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ since

$$
\left.\frac{\partial}{\partial x^{i}}\right|_{p}(f g)=\frac{\partial f}{\partial x^{i}}(p) g(p)+f(p) \frac{\partial g}{\partial x^{i}}(p)
$$

These are linearly independent since $\left.\frac{\partial}{\partial x^{i}}\right|_{p} x^{j}=I_{i}^{j}$. We see that

$$
X(1)=1 \cdot X(1)+X(1) \cdot 1
$$

so $X(1)=0$. Similarly,

$$
X\left(\left(x^{i}-p^{i}\right)\left(x^{j}-p^{j}\right)\right)=0
$$

So by Taylor series:

$$
f(x)=f(p)+\left.\frac{\partial f}{\partial x^{i}}\right|_{p}\left(x^{i}-p^{i}\right)+O\left(|x-p|^{2}\right)
$$

We have formally that $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ span $T_{p}^{\text {der }} U$. To make this argument rigorous, we know that

$$
\begin{aligned}
f(x) & =f(p)+\int_{0}^{1} \frac{d}{d t} f(t x+(1-t) p) d t \\
& =f(p)+\left.\int_{0}^{1} \frac{\partial f}{\partial x^{i}}\right|_{t x+(1-t) p}\left(x^{i}-p^{i}\right) d t
\end{aligned}
$$

Hence if we apply a derivation X we have

$$
\begin{aligned}
X(f) & =\left.\int_{0}^{1} \frac{\partial f}{\partial x^{i}}\right|_{p} d t \cdot X\left(x^{i}-p^{i}\right)+X\left(\left.\int_{0}^{1} \frac{\partial f}{\partial x^{i}}\right|_{t x+(1-t) p} d t\right) \cdot\left(p^{i}-p^{i}\right) \\
& =\left.\frac{\partial f}{\partial x^{i}}\right|_{p} \cdot X\left(x^{i}-p^{i}\right)
\end{aligned}
$$

Hence for $U \subset \mathbb{R}^{n}$ we have a correspondence

$$
T_{p}^{\mathrm{der}} U \rightarrow \mathbb{R}^{n}
$$

given by

$$
X \rightarrow\left(X\left(x^{1}-p^{1}\right), \ldots, X\left(x^{n}-p^{n}\right)\right)
$$

which is an invertible linear map with inverse

$$
\begin{aligned}
\mathbb{R}^{n} & \rightarrow T_{p}^{\mathrm{der}} U \\
\left(s^{1}, \ldots, s^{n}\right) & \rightarrow\left(X(f)=\left.\frac{\partial f}{\partial x^{i}}\right|_{p} s^{i}\right) .
\end{aligned}
$$

On a manifold, we define

$$
\left.\frac{\partial}{\partial x^{i}}\right|_{p} f=\left.\frac{\partial}{\partial x^{i}}\right|_{\phi_{i}(p)}\left(f \circ \phi_{i}\right)
$$

for coordinates $\left(x^{1}, \ldots, x^{n}\right)=\phi_{i}(p)$. Notice that under a change of coordinates from $\left(y^{1}, \ldots, y^{n}\right)=\phi_{j}(p)$ we have that

$$
\begin{aligned}
\frac{\partial}{\partial x^{k}} & =\left.\frac{\partial}{\partial x^{k}}\right|_{\phi_{i}(p)}\left(f \circ \phi_{i}\right) \\
& =\left.\frac{\partial}{\partial x^{k}}\right|_{\phi_{j} \circ \phi_{i}^{-1} \circ \phi_{i}(p)}\left(f \circ \phi_{j} \circ \phi_{i}^{-1} \circ \phi_{i}\right) \\
& =\left.\left.\frac{\partial y^{\ell}}{\partial x^{k}}\right|_{\phi_{i}(p)} \frac{\partial}{\partial y^{\ell}}\right|_{\phi_{j}(p)}\left(f \circ \phi_{j}\right)
\end{aligned}
$$

Also, we have the projection $\pi: T^{\text {der }} M \rightarrow M$.

Proposition 7. Let $M=\mathbb{R}^{n}$. The derivations $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ form a basis for the derivations at p.

Proof. We first see that $X(c)=0$ if c is a constant function. By linearity of the derivation, we need only show that $X(1)=0$. We compute:

$$
\begin{aligned}
X(1) & =X(1 \cdot 1) \\
& =1 \cdot X(1)+X(1) \cdot 1 \\
& =2 X(1)
\end{aligned}
$$

We conclude that $X(1)=0$.
Now, let X be a derivation and f a smooth function. We can write f as

$$
\begin{aligned}
f(x) & =f(p)+\int_{0}^{1} \frac{d}{d t} f(t x+(1-t) p) d t \\
& =f(p)+\left.\int_{0}^{1} \frac{\partial f}{\partial x^{i}}\right|_{t x+(1-t) p}\left(x^{i}-p^{i}\right) d t
\end{aligned}
$$

By linearity and the derivation property, we have

$$
\begin{aligned}
X(f) & =X(f(p))+X\left(\left.\int_{0}^{1} \frac{\partial f}{\partial x^{i}}\right|_{t x+(1-t) p}\left(x^{i}-p^{i}\right) d t\right) \\
& =0+\left(\left.\int_{0}^{1} \frac{\partial f}{\partial x^{i}}\right|_{t p+(1-t) p} d t\right) X\left(x^{i}-p^{i}\right)+X\left(\left.\int_{0}^{1} \frac{\partial f}{\partial x^{i}}\right|_{t x+(1-t) p} d t\right)\left(p^{i}-p^{i}\right) \\
& =\left.\frac{\partial f}{\partial x^{i}}\right|_{p} X\left(x^{i}-p^{i}\right) .
\end{aligned}
$$

So, $X\left(x^{i}-p^{i}\right)$ are just some numbers, and so we see that X is a linear combination of $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$, meaning that these span the space of derivations! Since it is clear that $\left.\frac{\partial}{\partial x^{i}}\right|_{p}$ and $\left.\frac{\partial}{\partial x^{j}}\right|_{p}$ are linearly independent for each $i \neq j$ (consider the functions $x^{i}-p^{i}$), the result follows.

Definition 8. Given any smooth map $F: M \rightarrow N$, there is a push forward F_{*} : $T_{p} M \rightarrow T_{F(p)} M$ given as follows:

$$
\begin{aligned}
F_{*}^{\text {path }}[\gamma] & =[F \circ \gamma] \\
\left(F_{*}^{d e r} X\right) f & =X(f \circ F)
\end{aligned}
$$

Definition 9. In any coordinate neighborhood (U, ϕ) of p, we define the derivation $\left.\frac{\partial}{\partial x^{k}}\right|_{p} b y$

$$
\left.\frac{\partial}{\partial x^{k}}\right|_{p}=\left.\phi_{*}^{-1} \frac{\partial}{\partial x^{k}}\right|_{\phi(p)}
$$

We may now see that $T_{p}^{\text {der }} M$ is isomorphic to $T_{p}^{\text {path }} M$. The map is

$$
[\gamma] \rightarrow\left\{\left.f \rightarrow \frac{d}{d t}\right|_{t=0} f(\gamma(t))\right\}
$$

We note that

$$
\left.\frac{d}{d t}\right|_{t=0} f(\gamma(t))=\left.\left.\frac{\partial\left(f \circ \phi_{i}^{-1}\right)}{\partial x^{j}}\right|_{\phi_{i} \circ \gamma(0)} \cdot \frac{d\left(\phi_{i} \circ \gamma\right)^{j}}{d t}\right|_{0}
$$

and hence it is well-defined up to equivalence of paths. Note that $\left\{\phi_{i}^{-1}\left(p+t e_{k}\right)\right\}_{k=1}^{n}$ form a basis for $[\gamma]$ and map to $\left.\frac{\partial}{\partial x^{k}}\right|_{p}$ so this is a linear isometry.

We will now use whichever definition we wish. Also note the following:
Proposition 10. If $p \in U \subseteq M$ is an open set, then

$$
T_{p} M \cong T_{p} U
$$

Therefore, we will not make a distinction.

2. Computation in coordinates

Let's compute the push-forward in coordinates. Recall that $\left\{\left.\frac{\partial}{\partial x^{k}}\right|_{p}\right\}_{k=1}^{m}$ is a basis for $T_{p} M$. Now, suppose that $\left\{\left.\frac{\partial}{\partial y^{a}}\right|_{F(p)}\right\}_{a=1}^{n}$ is a basis for $T_{F(p)} N$. Given a smooth map $F: M \rightarrow N$, we should be able to compute the push forward in coordinates. If $X \in T_{p} M$, we can write it in terms of the basis,

$$
X=\left.X^{k} \frac{\partial}{\partial x^{k}}\right|_{p}
$$

for some numbers $X^{k} \in \mathbb{R}$. To compute the push forward, which is a linear map, we have that

$$
F_{*} X=\left.X^{k} F_{*} \frac{\partial}{\partial x^{k}}\right|_{p}
$$

First, let's suppose $M=\mathbb{R}^{m}$ and $N=\mathbb{R}^{n}$. To compute $\left.F_{*} \frac{\partial}{\partial x^{k}}\right|_{p}$, for $f \in C^{\infty}(N)$ we need to compute

$$
\begin{aligned}
\left(\left.F_{*} \frac{\partial}{\partial x^{k}}\right|_{p}\right) f & =\left.\frac{\partial}{\partial x^{k}}\right|_{p}(f \circ F) \\
& =\left.\left.\frac{\partial f}{\partial y^{a}}\right|_{F(p)} \frac{\partial y^{a}}{\partial x^{k}}\right|_{p}
\end{aligned}
$$

(note the summation) where, in the second expression, we really mean

$$
\left.\frac{\partial y^{a}}{\partial x^{k}}\right|_{p}=\left.\frac{\partial y^{a}(F(x))}{\partial x^{k}}\right|_{p}=\left.\frac{\partial F^{a}}{\partial x^{k}}\right|_{p}
$$

if $F=\left(F^{1}, \ldots, F^{n}\right)$ is written in y-coordinates. Notice that once we have specified the coordinates, we have an expression for F_{*} in terms of the differential.

Now suppose we are on a manifold, then

$$
\left(\left.F_{*} \frac{\partial}{\partial x^{k}}\right|_{p}\right)=\left(\left.\psi_{*}^{-1}\left(\psi_{*} F_{*} \phi_{*}^{-1}\right) \phi_{*} \frac{\partial}{\partial x^{k}}\right|_{\phi}\right)
$$

The middle map is known to us, as it is the differential of a map between \mathbb{R}^{m} and \mathbb{R}^{n}, that is

$$
\psi_{*} F_{*} \phi_{*}^{-1}=\left(\frac{\partial \hat{F}^{a}}{\partial x^{k}}(\phi(p))\right)_{\substack{k=1, \ldots, m \\ a=1, \ldots, n}}
$$

where $\hat{F}=\psi \circ F \circ \phi^{-1}$. In particular, we get

$$
\left(\left.F_{*} \frac{\partial}{\partial x^{k}}\right|_{p}\right)=\left.\frac{\partial \hat{F}^{a}}{\partial x^{k}}(\phi(p)) \frac{\partial}{\partial y^{a}}\right|_{F(p)}
$$

One can also consider change of coordinates. If (U, ϕ) and (V, ψ) are coordinate charts with coordinates $\left(x^{i}\right)$ and $\left(\tilde{x}^{i}\right)$, then any tangent vector can be written as

$$
X=\left.X^{i} \frac{\partial}{\partial x^{i}}\right|_{p}=\left.\tilde{X}^{i} \frac{\partial}{\partial \tilde{x}^{i}}\right|_{p}
$$

How are X^{i} and \tilde{X}^{i} related? We can compute:

$$
\begin{aligned}
\left.\tilde{X}^{i} \frac{\partial}{\partial \tilde{x}^{i}}\right|_{p} & =\left.\tilde{X}^{i} \psi_{*}^{-1} \frac{\partial}{\partial \tilde{x}^{i}}\right|_{\psi(p)} \\
& =\left.\tilde{X}^{i} \phi_{*}^{-1} \phi_{*} \psi_{*}^{-1} \frac{\partial}{\partial \tilde{x}^{i}}\right|_{\psi(p)} \\
& =\left.\tilde{X}^{i} \phi_{*}^{-1}\left(\phi \circ \psi^{-1}\right)_{*} \frac{\partial}{\partial \tilde{x}^{i}}\right|_{\psi(p)} \\
& =\tilde{X}^{i} \phi_{*}^{-1}\left[\left.\frac{\partial\left(\phi \circ \psi^{-1}\right)^{k}}{\partial \tilde{x}^{i}}(\psi(p)) \frac{\partial}{\partial x^{k}}\right|_{\phi(p)}\right] \\
& =\left.\tilde{X}^{i} \frac{\partial\left(\phi \circ \psi^{-1}\right)^{k}}{\partial \tilde{x}^{i}}(\psi(p)) \frac{\partial}{\partial x^{k}}\right|_{p}
\end{aligned}
$$

and so

$$
X^{k}=\tilde{X}^{i} \frac{\partial\left(\phi \circ \psi^{-1}\right)^{k}}{\partial \tilde{x}^{i}}(\psi(p))
$$

Example 1. Calculate the differential of the map $F: \mathbb{C}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{C P}^{1}$.

