CHAPTER 3: TANGENT SPACE

DAVID GLICKENSTEIN

1. TANGENT SPACE

We shall define the tangent space in several ways. We first try gluing them
together. We know vectors in a Euclidean space require a basepoint x € U C R"
and a vector v € R". A C'*°-manifold consists of a number of pieces of R™ glued
together via coordinate charts, so we can define all tangents as follows. Consider
what happens during a change of parametrization ¢ : V' — U. It will take a vector
v to d¢ (v) . This motivates the following:

Definition 1. T9¢M = | | (U; x R™) / ~ where for (z,v) € U; xR", (y,w) € U; x

R"™ we have (z,v) ~ (y,w) if and only iff y = ¢;6; ' (x) and w = d (@qbi_l)z (v).
The nice thing about this definition is it puts things together and gives the
vectors in a good way. We define the tangent space at a point p € M as TZ’:}I‘“M =
{lp,v] : v € R"} . It is easy to see that TE"™°M is an n-dimensional vector space. It
is also easy to see that there is a map 7 : T#"*M — M defined by 7 ([p,v]) = p
(since the parts of M are really equivalence classes modulo equivalence. It also
makes it clear that 75" M is a C°° manifold.
We can define tangent spaces in two other ways.
Definition 2. T;j“thM = {paths v : (—e,e) = M such that v (0) = p} / ~ where
a ~ B if (pioa) (0) = (¢;0p8) (0) for every i such that p € U;. TP M =
I_l TgathM'
peEM

This is a more geometric definition. Note that there is a map m : TP M — M
defined by 7 () = v(0).
We shall show that TP**" A/ and T8¢ M are equivalent. The maps are

O TP — TEC M
defined by
@ ([7)) = [9i 07 (0), (¢5 07) (0)] -
The inverse map is
P . Telue gy, ppath pr
defined by
U ([¢i (p),v]) = [t — &7 " (91 (p) +t0)] -

It is clear that if well defined, they are inverses of each other. We need to show
that ® and ¥ are well-defined. Clearly ® is well defined because ¢; o v (0) =
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i 0 B(0),(¢i07) (0) = (¢ 08) (0) for any 5 € [7]. Also for any (¢; (p) ,w) €
[ (p) ,v] must satisfy d (qﬁz o ¢;1)¢_(p) v = w. Notice that
(667 (55 (0) + )} (0) = d (85.0.671) ) v = = (65 (8) + tw)' (0).

The third way is in terms of germs of functions. A germ of a function is an
equivalence class of functions.

Definition 3. Germs, is the set of functions f € C*> (Uy) forp € Uy C M modulo
the equivalence that [f] = [g] iff f (x) = g () for all x € UsNUy,. Note that Germs,
are an algebra since [f] + [g] = [f + g] is well-defined, etc.

Definition 4. A derivation of germs is an R-linear map X :Germs, — R which
satisfies

X (f9)=f@) X (9)+X(f)gp).
Definition 5. We define Tzﬁl”M to be the set of derivations of germs at p.

Proposition 6. Alternately, we may define the Tg”M to be the set of derivations
of smooth functions at p.

Proof. Suppose X : O (M) — R is a derivation at p. Then it determines a deriva-
tion of germs in the obvious way. Conversely, suppose [f] is a germ at p. Then
there is a representative f : U — R, and within that open set is a coordinate ball B
centered at p. Taking a smaller ball, we have a compact (closed) coordinate ball B’
around p within the domain U of f. We can consider the function z — b(z) f (z),
where b is a smooth bump function supported in U that is one on the ball B’.
These ([

This definition is nice because it shows how tangent vectors act on functions.
We note derivations are a vector space since

(X+Y)(fg)=X(NHagp) +f)X (@) +Y (flgp) +f(p)Y (9)
=(X+Y)(flglp) +fp)(X+Y)(g).

12}

A good example of a germ on U C R™ is 575 v since
0 _of Jg
p p(fg) = 5 P @)+ f )55 1)

These are linearly independent since a?ui » = If . We see that
X1)=1-X1)+X(1)-1

so X (1) = 0. Similarly,
X (& 1) (27 ~ 1)) = 0.

So by Taylor series:
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We have formally that %
that

, span T{erU. To make this argument rigorous, we know

F@)=F)+ [ S Gt (1= typ)dr

Lof . )
—1o+ [ 5% - ) d
0 o thr(lft)p( )
Hence if we apply a derivation X we have
Loy ) . Loaf . )
X(f):/ | dt- X (' —p')+ X / — dt|-(p"—p'
) o, («" = p') i R (r =7
af ; ;
= | - X (2 —p").
Oz' |, (v p)

Hence for U C R™ we have a correspondence
T3"U — R"

given by
X%(X(azlfpl),...,X(x"fp"))

s’) .
P

which is an invertible linear map with inverse
n der
R" = T,U

9]
iy (100 2

On a manifold, we define

0 0
ox’ = Ox (Fo i)
P ¢i(p)
for coordinates (ml, . ,x”) = ¢; (p) . Notice that under a change of coordinates
from (y',...,y") = ¢; (p) we have that
0 0
E T AR (fodi)
Ok Ozt #i(p)
R (fods06r 00r)
= j © Pi i
0% |4 007 L0 (0)
oy* 0
= o% =7 (f o))
0% |4,y 09" s, )

Also, we have the projection 7 : T9" M — M.

Proposition 7. Let M = R”. The derivations %
tions at p.

» form a basis for the deriva-
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Proof. We first see that X (¢) = 0 if ¢ is a constant function. By linearity of the
derivation, we need only show that X (1) = 0. We compute:

X(1)=X(1-1)
=1 X))+ X(1)-1
=2X(1).
We conclude that X (1) = 0.

Now, let X be a derivation and f a smooth function. We can write f as

f@ =+ [ G-

1
0
Zf(p)+/0 87];

By linearity and the derivation property, we have
1
o S
o (zl — pZ) dt
te+(1—t)p

X(f)—X(f(p))+X</O o
) ) Loaf
dt | X (' —p') + X —
tp+(1—t)p ) S </0 Ozt

of X(:ci fpi).

i
8xp

(SL'i — pi) dt.
tz+(1—t)p

dt) (pi —pi)
te+(1—t)p

So, X (azl — p’) are just some numbers, and so we see that X is a linear combination

of % b meaning that these span the space of derivations! Since it is clear that
% » land %\p are linearly independent for each ¢ # j (consider the functions
x' — p*), the result follows. a

Definition 8. Given any smooth map F : M — N, there is a push forward F, :
TyM — Tp)yM given as follows:
FP [y] = [F o]

(FI"X) f=X(foF).
Definition 9. In any coordinate neighborhood (U, ¢) of p, we define the derivation
ae |, by

9

Oxk

Lo
* Oz

P ¢(p)

We may now see that Tg”M is isomorphic to T;’athM . The map is

d
-{r- % ra)
We note that
d d(fog; ) d (i 0 7)’
— t)) = -
rARRAUC) e & |
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and hence it is well-defined up to equivalence of paths. Note that {¢; ' (p + tey) }Z:1
form a basis for [y] and map to 3% , 50 this is a linear isometry.
We will now use whichever definition we wish. Also note the following:

Proposition 10. If p € U C M is an open set, then
T,M =T,U.

Therefore, we will not make a distinction.

2. COMPUTATION IN COORDINATES

m
Let’s compute the push-forward in coordinates. Recall that {% P}k is a
=1

basis for T, M. Now, suppose that { aga

} is a basis for Tp(,)N. Given a
F(p) a=1

smooth map F' : M — N, we should be able to compute the push forward in
coordinates. If X € T, M, we can write it in terms of the basis,

9
X=Xk _—
Oxk

p

for some numbers X* € R. To compute the push forward, which is a linear map,
we have that

RX:XWny
oxk v

First, let’s suppose M = R™ and N = R". To compute F a—'zk|p, for f € C>~ (N)

we need to compute
0 0
F, — = —
( Oxk p> f ozt |,

_ of
o

(foF)

oy®
F(p) O

p

(note the summation) where, in the second expression, we really mean

dy*| oy (F(x))|  OF°
k| — k ~ 9.k
ozt |, Ox ,  OxF |
if I = (F Lo F ") is written in y-coordinates. Notice that once we have specified

the coordinates, we have an expression for F, in terms of the differential.
Now suppose we are on a manifold, then
¢>

0 _ _ 0

The middle map is known to us, as it is the differential of a map between R™ and
R™, that is

p

boFoT! = (gf; (6 <p)>>
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where F' = 1) o F o ¢~ L. In particular, we get
d oF® d
Fo——=| | = (0(®) 74
k k a
( oz p> oz dy Fp)

One can also consider change of coordinates. If (U, ¢) and (V, ) are coordinate
charts with coordinates (w’) and (il) , then any tangent vector can be written as

X =X ai = X! aﬁ
ox » o0z »
How are X’ and X* related? We can compute:
oz P 0z P (p)
S0
:XL¢* ¢*¢* a~i
T lp(p)
i1 1 9
= X0, (GouY), 5
Ty (p)
o fa(eow™)" )
= X' ! [n @) 7%
0T oxk 5(p)
_ %‘3(‘;507/’71)]6 9
= X 00 |
and so .
i 0(povt)
k __ %

Example 1. Calculate the differential of the map F : C2\ {(0,0)} — CP'.



