
CHAPTER 3: TANGENT SPACE

DAVID GLICKENSTEIN

1. Tangent space

We shall de�ne the tangent space in several ways. We �rst try gluing them
together. We know vectors in a Euclidean space require a basepoint x 2 U � Rn
and a vector v 2 Rn: A C1-manifold consists of a number of pieces of Rn glued
together via coordinate charts, so we can de�ne all tangents as follows. Consider
what happens during a change of parametrization � : V ! U: It will take a vector
v to d� (v) : This motivates the following:

De�nition 1. T glueM =
F
i

(Ui � Rn) = � where for (x; v) 2 Ui�Rn; (y; w) 2 Uj�

Rn we have (x; v) � (y; w) if and only i¤ y = �j�
�1
i (x) and w = d

�
�j�

�1
i

�
x
(v) :

The nice thing about this de�nition is it puts things together and gives the
vectors in a good way. We de�ne the tangent space at a point p 2M as T gluep M =

f[p; v] : v 2 Rng : It is easy to see that T gluep M is an n-dimensional vector space. It
is also easy to see that there is a map � : T glueM ! M de�ned by � ([p; v]) = p
(since the parts of M are really equivalence classes modulo equivalence. It also
makes it clear that T glueM is a C1 manifold.
We can de�ne tangent spaces in two other ways.

De�nition 2. T pathp M = fpaths 
 : (�"; ")!M such that 
 (0) = pg = � where
� � � if (�i � �)0 (0) = (�i � �)0 (0) for every i such that p 2 Ui: T

pathM =F
p2M

T pathp M:

This is a more geometric de�nition. Note that there is a map � : T pathM !M
de�ned by � (
) = 
 (0) :
We shall show that T pathM and T glueM are equivalent. The maps are

� : T pathp M ! T gluep M

de�ned by
� ([
]) =

�
�i � 
 (0) ; (�i � 
)0 (0)

�
:

The inverse map is
	 : T glueM ! T pathM

de�ned by
	([�i (p) ; v]) =

�
t! ��1i (�i (p) + tv)

�
:

It is clear that if well de�ned, they are inverses of each other. We need to show
that � and 	 are well-de�ned. Clearly � is well de�ned because �i � 
 (0) =
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�i � � (0) ; (�i � 
)0 (0) = (�i � �)0 (0) for any � 2 [
] : Also for any (�j (p) ; w) 2
[�i (p) ; v] must satisfy d

�
�i � ��1j

�
�j(p)

v = w: Notice that�
�j�

�1
i (�i (p) + tv)

	0
(0) = d

�
�j � ��1i

�
�i(p)

v = w = (�j (p) + tw)
0
(0) :

The third way is in terms of germs of functions. A germ of a function is an
equivalence class of functions.

De�nition 3. Germsp is the set of functions f 2 C1 (Uf ) for p 2 Uf �M modulo
the equivalence that [f ] = [g] i¤ f (x) = g (x) for all x 2 Uf \Ug: Note that Germsp
are an algebra since [f ] + [g] = [f + g] is well-de�ned, etc.

De�nition 4. A derivation of germs is an R-linear map X :Germsp ! R which
satis�es

X (fg) = f (p)X (g) +X (f) g (p) :

De�nition 5. We de�ne T derp M to be the set of derivations of germs at p:

Proposition 6. Alternately, we may de�ne the T derp M to be the set of derivations
of smooth functions at p:

Proof. Suppose X : C1 (M)! R is a derivation at p: Then it determines a deriva-
tion of germs in the obvious way. Conversely, suppose [f ] is a germ at p: Then
there is a representative f : U ! R, and within that open set is a coordinate ball B
centered at p: Taking a smaller ball, we have a compact (closed) coordinate ball B0

around p within the domain U of f: We can consider the function x! b (x) f (x) ;
where b is a smooth bump function supported in U that is one on the ball B0.
These �

This de�nition is nice because it shows how tangent vectors act on functions.
We note derivations are a vector space since

(X + Y ) (fg) = X (f) g (p) + f (p)X (g) + Y (f) g (p) + f (p)Y (g)

= (X + Y ) (f) g (p) + f (p) (X + Y ) (g) :

A good example of a germ on U � Rn is @
@xi

��
p
since

@

@xi

����
p

(fg) =
@f

@xi
(p) g (p) + f (p)

@g

@xi
(p) :

These are linearly independent since @
@xi

��
p
xj = Iji : We see that

X (1) = 1 �X (1) +X (1) � 1

so X (1) = 0: Similarly,

X
��
xi � pi

� �
xj � pj

��
= 0:

So by Taylor series:

f (x) = f (p) +
@f

@xi

����
p

�
xi � pi

�
+O

�
jx� pj2

�
:
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We have formally that @
@xi

��
p
span T derp U: To make this argument rigorous, we know

that

f (x) = f (p) +

Z 1

0

d

dt
f (tx+ (1� t) p) dt

= f (p) +

Z 1

0

@f

@xi

����
tx+(1�t)p

�
xi � pi

�
dt:

Hence if we apply a derivation X we have

X (f) =

Z 1

0

@f

@xi

����
p

dt �X
�
xi � pi

�
+X

 Z 1

0

@f

@xi

����
tx+(1�t)p

dt

!
�
�
pi � pi

�
=

@f

@xi

����
p

�X
�
xi � pi

�
:

Hence for U � Rn we have a correspondence

T derp U ! Rn

given by

X !
�
X
�
x1 � p1

�
; : : : ; X (xn � pn)

�
which is an invertible linear map with inverse

Rn ! T derp U�
s1; : : : ; sn

�
!
 
X (f) =

@f

@xi

����
p

si

!
:

On a manifold, we de�ne

@

@xi

����
p

f =
@

@xi

����
�i(p)

(f � �i)

for coordinates
�
x1; : : : ; xn

�
= �i (p) : Notice that under a change of coordinates

from
�
y1; : : : ; yn

�
= �j (p) we have that

@

@xk
=

@

@xk

����
�i(p)

(f � �i)

=
@

@xk

����
�j���1i ��i(p)

�
f � �j � ��1i � �i

�
=

@y`

@xk

����
�i(p)

@

@y`

����
�j(p)

(f � �j)

Also, we have the projection � : T derM !M:

Proposition 7. Let M = Rn: The derivations @
@xi

��
p
form a basis for the deriva-

tions at p:
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Proof. We �rst see that X (c) = 0 if c is a constant function. By linearity of the
derivation, we need only show that X (1) = 0: We compute:

X (1) = X (1 � 1)
= 1 �X (1) +X (1) � 1
= 2X (1) :

We conclude that X (1) = 0:
Now, let X be a derivation and f a smooth function. We can write f as

f (x) = f (p) +

Z 1

0

d

dt
f (tx+ (1� t) p) dt

= f (p) +

Z 1

0

@f

@xi

����
tx+(1�t)p

�
xi � pi

�
dt:

By linearity and the derivation property, we have

X (f) = X (f (p)) +X

 Z 1

0

@f

@xi

����
tx+(1�t)p

�
xi � pi

�
dt

!

= 0 +

 Z 1

0

@f

@xi

����
tp+(1�t)p

dt

!
X
�
xi � pi

�
+X

 Z 1

0

@f

@xi

����
tx+(1�t)p

dt

!�
pi � pi

�
=

@f

@xi

����
p

X
�
xi � pi

�
:

So, X
�
xi � pi

�
are just some numbers, and so we see that X is a linear combination

of @
@xi

��
p
; meaning that these span the space of derivations! Since it is clear that

@
@xi

��
p
and @

@xj

��
p
are linearly independent for each i 6= j (consider the functions

xi � pi), the result follows. �

De�nition 8. Given any smooth map F : M ! N; there is a push forward F� :
TpM ! TF (p)M given as follows:

F path� [
] = [F � 
]�
F der� X

�
f = X (f � F ) :

De�nition 9. In any coordinate neighborhood (U; �) of p, we de�ne the derivation
@
@xk

��
p
by

@

@xk

����
p

= ��1�
@

@xk

����
�(p)

We may now see that T derp M is isomorphic to T pathp M: The map is

[
]!
�
f ! d

dt

����
t=0

f (
 (t))

�
:

We note that

d

dt

����
t=0

f (
 (t)) =
@
�
f � ��1i

�
@xj

�����
�i�
(0)

� d (�i � 
)
j

dt

�����
0
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and hence it is well-de�ned up to equivalence of paths. Note that
�
��1i (p+ tek)

	n
k=1

form a basis for [
] and map to @
@xk

��
p
so this is a linear isometry.

We will now use whichever de�nition we wish. Also note the following:

Proposition 10. If p 2 U �M is an open set, then

TpM �= TpU:

Therefore, we will not make a distinction.

2. Computation in coordinates

Let�s compute the push-forward in coordinates. Recall that
n

@
@xk

��
p

om
k=1

is a

basis for TpM: Now, suppose that
�

@
@ya

���
F (p)

�n
a=1

is a basis for TF (p)N: Given a

smooth map F : M ! N; we should be able to compute the push forward in
coordinates. If X 2 TpM; we can write it in terms of the basis,

X = Xk @

@xk

����
p

for some numbers Xk 2 R. To compute the push forward, which is a linear map,
we have that

F�X = XkF�
@

@xk

����
p

:

First, let�s suppose M = Rm and N = Rn: To compute F� @
@xk

��
p
; for f 2 C1 (N)

we need to compute  
F�

@

@xk

����
p

!
f =

@

@xk

����
p

(f � F )

=
@f

@ya

����
F (p)

@ya

@xk

����
p

(note the summation) where, in the second expression, we really mean

@ya

@xk

����
p

=
@ya (F (x))

@xk

����
p

=
@F a

@xk

����
p

if F =
�
F 1; : : : ; Fn

�
is written in y-coordinates. Notice that once we have speci�ed

the coordinates, we have an expression for F� in terms of the di¤erential.
Now suppose we are on a manifold, then 

F�
@

@xk

����
p

!
=

 
 �1�

�
 �F��

�1
�
�
��

@

@xk

����
�

!
:

The middle map is known to us, as it is the di¤erential of a map between Rm and
Rn; that is

 �F��
�1
� =

 
@F̂ a

@xk
(� (p))

!
k=1;:::;m
a=1;:::;n
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where F̂ =  � F � ��1: In particular, we get 
F�

@

@xk

����
p

!
=
@F̂ a

@xk
(� (p))

@

@ya

����
F (p)

One can also consider change of coordinates. If (U; �) and (V;  ) are coordinate
charts with coordinates

�
xi
�
and

�
~xi
�
; then any tangent vector can be written as

X = Xi @

@xi

����
p

= ~Xi @

@~xi

����
p

:

How are Xi and ~Xi related? We can compute:

~Xi @

@~xi

����
p

= ~Xi �1�
@

@~xi

����
 (p)

= ~Xi��1� �� 
�1
�

@

@~xi

����
 (p)

= ~Xi��1�
�
� �  �1

�
�

@

@~xi

����
 (p)

= ~Xi��1�

"
@
�
� �  �1

�k
@~xi

( (p))
@

@xk

����
�(p)

#

= ~Xi @
�
� �  �1

�k
@~xi

( (p))
@

@xk

����
p

and so

Xk = ~Xi @
�
� �  �1

�k
@~xi

( (p)) :

Example 1. Calculate the di¤erential of the map F : C2 n f(0; 0)g ! CP1.


