
COHOMOLOGY

DAVID GLICKENSTEIN

1. Introduction

Cohomology is the homology theory gotten by the dual chain complex to homol-
ogy:

C�n = Hom(Cn;Z) ;
which has coboundary maps �n = @�n+1 : C

�
n ! C�n+1 (notice that the index goes up

instead of down). The main advantage of cohomology over homology is that it is
a ring, i.e., it has a multiplication, whereas homology does not (it has a coproduct
making it a co-ring, instead of a product making it a ring). The product is a bit
di¢ cult to describe, and we will not describe it for singular cohomology.
Instead, we will look at cohomology of the complex of di¤erential forms, which

have a natural product, the wedge product.

2. De Rham cohomology groups

De�nition 1. Recall the space of k-forms Ak (M) ; together with the di¤erential
maps d : Ak (M) ! Ak+1 (M) : The set of closed k-forms Zk (M) are forms ! 2
Ak (M) such that d! = 0: The set of exact k-forms Bk (M) are the forms ! 2
dAk�1 (M) � Ak (M) : The de Rham cohomology groups Hk

dR (M) are de�ned as

Hk
dR (M) = Zk (M) =Bk (M) :

Remark 1. The k-forms form a cochain complex given by the di¤erential maps d :
Ak (M) ! Ak+1 (M) : Notice that in a cochain complex, the di¤erential increases
the index, while in a chain complex the index is decreased. Cochain complexes give
cohomology and chain complexes give homology.

Remark 2. Recall that Ak (M) is a vector space over R. The singular chains
Ck (M) are free abelian groups, and hence modules over Z. The groups Ak (M)
have more similarity to Ck (M)
 R, which is a vector space.

It will be important to recall the following fact from last semester (the proof is
a direct calculation, and you can refer to Lemma 12.16 in Lee):

Proposition 2. If G : M ! N is a smooth map, then the pullback map G� :
Ak (N)! Ak (M) commutes with d; i.e., dG� = G�d:

We now look at the same sorts of �functorial� properties of the cohomology.
Notice that induced maps on cohomology naturally turn compositions around, as
opposed to induced maps on homology.
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Proposition 3. For any smooth map G : M ! N; the pullback G� : Ak (N) !
Ak (M) carries closed forms to closed forms and exact forms to exact forms. Thus
it induces a homomorphism on cohomology. It has the following properties:

(1) If F : N ! P is another smooth map, then

(F �G)� = G� � F �:

(2) If IdM denotes the identity map on M; then Id�M : Hp
dR (M) ! Hp

dR (M)
is the identity map.

Proof. Recall that pullbacks commute with the di¤erential, i.e., G�d! = dG�!,
which we recall follows from the calculation:

G�d
�
f dxi1 ^ � � � ^ dxik

�
= G�

�
df ^ dxi1 ^ � � � ^ dxik

�
= d (f �G) ^ d

�
xi1 �G

�
^ � � � ^ d

�
xik �G

�
= dG�

�
f dxi1 ^ � � � ^ dxik

�
:

[REMIND YOURSELF OF HOW TO COMPUTE PULLBACKS AND DIFFER-
ENTIALS!] Thus we get that if ! is closed, i.e., d! = 0; then

dG�! = G�d! = 0

and if ! = d� (! is exact), then

G�! = G�d� = dG��

and so G�! is exact. It follows that it induces a homomorphism on cohomology.
The other two follow from their properties on forms. �

Corollary 4. Di¤eomorphic manifolds have isomorphic de Rham cohomology groups.

Proposition 5. There is a product Hk
dR (M)�H`

dR (M)! Hk+`
dR (M) given by

[!] [� ] = [! ^ � ]

that gives
L

kH
k
dR (M) a (graded) ring structure.

Proof. We will just show that the product is well-de�ned. Suppose d! = 0 and
d� = 0: Consider

[! + d!0] [� + d� 0] = [(! + d!0) ^ (� + d� 0)]
= [! ^ � + ! ^ d� 0 + d!0 ^ � + d!0 ^ d� 0]
= [! ^ � ]

since

d
�
(�1)k ! ^ � 0 + !0 ^ � + !0 ^ d�

�
= (�1)k d! ^ � 0 + ! ^ d� 0 + d!0 ^ � + (�1)k�1 !0 ^ d� + d!0 ^ d� 0

= ! ^ d� 0 + d!0 ^ � + d!0 ^ d� 0

since d! = 0 and d� = 0: �
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3. Homotopy invariance

Proposition 6. Let F;G : M ! N be (smoothly) homotopic smooth maps. For
every p; the induced cohomology maps F �; G� : Hp

dR (N)! Hp
dR (M) are equal.

Proof. This proof is similar to the proof of homotopy invariance of maps between
homology groups. We need to show that the homotopy induces a cochain homotopy
equivalence, which is a map h : Ap (N) ! Ap�1 (M) such that dh! + hd! =
G�! � F �!: (Check that this implies the induces maps on homology are the same.
The argument is analogous to chain homotopy equivalence.) Let H : M � I ! N
be a smooth homotopy between F and G: Let ! 2 Ap (N) : We can pull back
H�! 2 Ap (M � I) and let

h! =

Z 1

0

@

@t
cH�! dt

where @
@t is the generator for TI: This goes the proper space. Now suppose that

H�! = fdt ^ dxi1 ^ � � � ^ dxip�1 and we check:

dh! = d

�Z 1

0

@

@t
cH�! dt

�
= d

��Z 1

0

f (x; t) dt

�
dxi1 ^ � � � ^ dxip�1

�
=

�Z 1

0

@f

@xj
dt

�
dxj ^ dxi1 ^ � � � ^ dxip�1 :

Now note that

H�d! = dH�!

= d
�
fdt ^ dxi1 ^ � � � ^ dxip�1

�
=

@f

@xj
dxj ^ dt ^ dxi1 ^ � � � ^ dxip�1

so

hd! =

Z 1

0

@

@t
c @f
@xj

dxj ^ dt ^ dxi1 ^ � � � ^ dxip�1 dt

= �
�Z 1

0

@fj
@xj

dt

�
dxj ^ dxi1 ^ � � � ^ dxip�1

and so in this case dh! + hd! = 0: In general, we may have a term in H�! that
has the form fdxi1 ^ � � � ^ dxip : For such a term, certainly h! = 0; but

hd! =

Z 1

0

@

@t
cH�d! dt

=

Z 1

0

@

@t
cdH�! dt

=

�Z 1

0

@f

@t
dt

�
dxi1 ^ � � � ^ dxip

= [f (x; 1)� f (x; 0)] dxi1 ^ � � � ^ dxip :
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In general, if ! = g dyj1 ^ � � � ^ dyjp ; then

H�! = (g �H) d
�
yj1 �H

�
^ � � � ^ d

�
yjp �H

�
= (g �H) @H

j1

@xi1
� � � @H

jp

@xip
dxi1 ^ � � � ^ dxip + dt ^ �

for some form �: Using the previous computations, we see that

dh! + hd! =

�
(g �H) @H

j1

@xi1
� � � @H

jp

@xip

�1
0

dxi1 ^ � � � ^ dxip

= F �! �G�!:

�

Theorem 7. If M;N are smoothly homotopy equivalent smooth manifolds, then
Hp
dR (M)

�= Hp
dR (N) for each p: The isomorphism is induced by any cochain ho-

motopy equivalence.

4. Mayer-Vietoris

Theorem 8 (Mayer-Vietoris sequence). Let M be a smooth manifold and let U; V
be open subsets of M whose union is M: For each p, there is a linear map � :
Hp
dR (U \ V )! Hp+1

dR (M) such that the following sequence is exact:

� � � �! Hp�1
dR (U \ V ) ��! Hp

dR (M)
k��`��! Hp

dR (U)�H
p
dR (V )

i��j��! Hp
dR (U \ V )

��! Hp+1
dR (M) �! � � �

where i : U \ V ! U; j : U \ V ! V; k : U !M; ` : V !M are inclusion maps.

Proof. The long exact sequence is derived from a short exact sequence of cochain
complexes:

0! Ap (M) k
��`��! Ap (U)�Ap (V ) i

��j��! Ap (U \ V )! 0

Once it is proven that this is a short exact sequence of cochain complexes, a zigzag
lemma/diagram chase produces the long exact sequence, similar to the construction
for chain complexes. If ! 2 Ap (M) ; k�! and `�! are just the restrictions of the
forms to U and V respectively, and hence if both are zero, then ! is zero on M; so
the �rst map is injective. Now suppose (�; �) 2 ker (i� � j�) : Then i� (�) = j� (�) ;
and so the restrictions of the two forms � and � to U \V must be the same, so the
two forms can be extended to a smooth form on U [ V = M , and since it is clear
that (i� � j�) � k� � `� = 0; the next part is exact.
Finally, we need to show that for any ! 2 Ap (U \ V ) ; there are forms � 2 Ap (U)

and � 2 Ap (V ) such that i�� � j�� = !: Let f�U ; �V g be a partition of unity
subordinate to fU; V g : We can now de�ne

� =

�
�V ! on U \ V
0 on U n supp �V

� =

�
��U! on U \ V
0 on V n supp �U

which are smooth forms on U and V: We now see that i��� j�� = (�U + �V )! =
!: �
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Note that we can again get an understanding of the connecting homomorphism.
If � [!] = [�] ; then there exist � 2 Ap (U) and � 2 Ap (V ) such that i��� j�� = !
and k�� = d� and `�� = d�: If we de�ne � and � as in the proof (using the
partitions of unity), we simply need to �nd � 2 Ap (M) : Note that since d! = 0
on U \ V; we have that

d�jU\V = d (! + �U\V ) = d�jU\V :
It follows that the support of d� is in U \V; and so it can be extended to a smooth
form on M; and we call that form �: Note [d�] = [d�] :

5. Computations

Proposition 9. Let M =
`
iMi be a disjoint union of smooth manifolds, the

inclusions �j :Mj !M induce an isomorphism from Hp
dR (M) to the direct productQ

j H
p
dR (Mj) :

Proof. These are already an isomorphism on forms, since if ! 2 Ap (M) and ��j! = 0
for all Ap (Mj) ; then ! = 0: Also, for any element in the direct product, the product
gives a form on M: �
Proposition 10. If M is a connected smooth manifolds, then H0

dR (M) is equal
the the space of constant functions, and hence one-dimensional.

Proof. A closed 0-form is a function f such that df = 0: On a connected smooth
manifold, this means that f is a constant. �
Proposition 11. If M is a zero-dimensional manifold, the dimension of H0

dR (M)
is equal to the cardinality of M; and all other de Rham cohomology groups are zero.

Proof. Since a zero-dimensional manifold is a disjoint union of connected zero-
manifolds (i.e., points), the result follows. �
Proposition 12 (Poincare Lemma). Let U be a star-shaped open subset of Rn:
Then Hp

dR (U) = 0 for p � 1:
Proof. Star shaped domains are contractible to a point, and soHp

dR (U)
�= Hp

dR (fptg) =
0 for p � 1: �
Proposition 13. For all p � 1; Hp

dR (Rn) = 0:

Proof. Rn is star-shaped. �
Proposition 14. Let M be a smooth manifold, and let ! be a closed p-form on
M; with p � 1: The for every q 2M; there is a neighborhood U of q on which ! is
exact.

Proof. Every point has a neighborhood U di¤eomorphic to a star-shaped domain
in Rn: We thus have that Hp

dR (U) = 0; so given ! such that d! = 0; we also have
that the restriction of ! to U satis�es d! = 0 and since [!] = 0; we must have a
form � 2 Ap�1 (U) such that ! = d�: �
One can also compute the cohomology of spheres using Mayer-Vietoris in much

the same way as we did for the homology of spheres. Note that we have the form
d� (which is not closed since we are considering the extension of the di¤erential
of the angle function), that we showed is closed but not exact last semester. One
needs to show that this generates the homology of S1, and then use Mayer-Vietoris
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to propagate the generator to all Sn: Let�s consider what happens for S1; where U
and V are extensions of the top and bottom of S1; so the intersection deformation
retracts to S0 =two points. Note that H0

dR

�
S0
�
is generated by constant functions

(0; 1) and (1; 0), where the comma refers to the value of the functions on each
component. Now, if we consider the function f = (1; 1) ; clearly this extends to the
function f = 1 on both U and V; but since this is constant, we have df = 0: However,
if we consider, say (1; 0) ; then this can be extended to the function f (�) = 1 � �
where � goes from 0 to 1: If we check carefully, we see that the image of this under
� is d�:
Using the usual induction argument, we get the following.

Proposition 15. The de Rham cohomology of spheres is

Hp
dR (S

n) �=
�
R if p = 0; n
0 otherwise.

Recall that we know how to integrate n-forms over the manifold, and Stokes�
theorem says that

R
M
d! = 0 if M is a closed manifold. Thus, we get that the

integration map

I ([!]) =

Z
M

!

is well-de�ned on de Rham cohomology. Note the following:

Proposition 16. An n-form ! on Sn is exact if and only if
R
Sn
! = 0:

Proof. Clearly, if ! = d�; then by Stokes�Theorem, we have that
R
Sn
! = 0:

Since every n-form is closed, we if ! is not exact, then it generates a nontrivial
de Rham cohomology class. By the calculation of the cohomology of spheres, there
must be an orientation form 
 such that ! = c
+ d�: The integral of this is c; and
so if c 6= 0; we have that the integral is nonzero. �

Proposition 17. For any balls B � B0 in Rn; an (n� 1)-form ! on Rn n �B is
exact if and only if

R
@B0 ! = 0:

Proof. We know that Rnn �B is homotopic to Sn�1; and so the de Rham cohomology
of Rnn �B is the same as that of Sn�1:Moreover, the inclusion map � : @B0 ! Rnn �B
generates an isomorphism of the de Rham cohomology groups, and so ! is exact if
and only if ��! is exact if and only if

R
Sn�1

��! = 0 by the previous proposition. �

Theorem 18. For any closed (compact), connected, oriented, smooth n-manifold
M; the integration map I : Hn

dR (M)! R is an isomorphism. Thus Hn
dR (M)

�= R
and is spanned by any smooth orientation form.

Proof. We already know that an orientation form gives a nonzero class in cohomol-
ogy, since d
 = 0 trivially and

R
M

 6= 0 shows that 
 6= d! and so [
] 6= 0: Thus

the integration map is surjective, and we need only show it is injective. Another
way to express this is to say that we need to show that

R
M
! = 0 implies that ! is

exact. Note that we have already shown this in the case of one-dimensional man-
ifolds (conservative if and only if exact). The zero dimensional case is clear, since
H0
dR (M) is generated by functions that are constant on each connected component.
To show injectivity, we need to show that for any n-form !, if

R
M
! = 0; then

! is exact. We will do this by considering �nite covers by coordinate balls. Un-
fortunately, coordinate balls are not compact, so to integrate, we must consider
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compactly supported forms. In the end, it is okay since all forms on a compact
manifold are compactly supported. Let fU1; : : : ; Ukg be a �nite cover of M by co-
ordinate balls. We will use Lemma 19 below and build up showing that compactly
supported forms onMj =

Sj
i=1 Ui that integrate to zero are exact. Lemma 19 gives

the base case. Now suppose it is true for j and consider a compactly supported
form ! on Mj+1 =

Sj+1
i=1 Ui such that

R
M
! = 0: Let f�;  g be a partition of unity

subordinate to the covering fMj ; Uj+1g of Mj+1: We will need an auxiliary form
to adjust the integral, since �! and  ! do not each integrate to zero, so let 
 be a
n-form compactly supported inMj \Uj such that

R
M

 = 1: (Note: we can reorder

the Ui so that this intersection is always nonempty, and we can �nd 
 using a bump
function and the orientation form.) We can now consider �! � c
 and  ! + c

where c =

R
Mj

�!: Both are compactly supported in Mj and Uj+1 respectively andZ
Mj

(�! � c
) = 0Z
Uj+1

( ! + c
) =

Z
Mj

((1� �)! + c
) = 0:

Thus there are compactly supported (n� 1)-forms �1 and �2 such that �! � c
 =
d�1 and  ! + c
 = d�2 (by the inductive hypothesis and Lemma 19). It follows
that � = �1 + �2 satis�es

d� = !:

Since Mk =M; the proof is complete. �
Lemma 19. Let n � 1 and suppose ! is a compactly supported smooth n-form on
Rn such that

R
Rn ! = 0: Then there exists a compactly supported (n� 1)-form � on

Rn such that d� = !:

Remark 3. We already know that an � exists, but not that one that is compactly
supported.

Proof. If n = 1; then ! = fdx for a smooth, compactly supported function f: We
can now write down the antiderivative

F (x) =

Z x

�1
f (t) dt;

which satis�es dF = fdx = !: If f is supported in [�R;R] ; then clearly F is zero
for x < �R: Since f = 0 for x > R and

R1
�1 ! = 0; we must have that F is zero

for x > R:
Now suppose n � 2: Let B and B0 be open balls in Rn such that

supp! � B � �B � B0:

There exists a smooth (n� 1)-form �0 such that d�0 = !: We have

0 =

Z
Rn
! =

Z
�B0
! =

Z
�B0
d�0 =

Z
@B0

�0:

It follows from Proposition 17 that �0 is exact on Rn n �B; so there is a smooth
(n� 2)-form 
 on Rn n �B such that �0 = d
: Now let  be a smooth bump function
supported on Rn n �B that is one on Rn nB0: Then consider

� = �0 � d ( 
)
This is a compactly supported (n� 1)-form such that d� = !: �
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6. Smooth singular cohomology

De�nition 20. A smooth p-simplex on M is a smooth map � : �p ! M: (Recall
that smooth means there is a smooth extension of the map in a neighborhood of any
point.) The smooth chain group C1p (M) � Cp (M) : The cohomology of this chain
group with the boundary operator @ is called the smooth singular homology group
H1
p (M)

Theorem 21. For any smooth manifold M; the map H1
p (M)! Hp (M) induced

by inclusion is an isomorphism.

We will omit the proof. The idea is that each singular chain inducing a homology
element needs to be approximated by a smooth singular chain that behaves well
under the boundary map.
Since we will be dealing only with cohomology with R coe¢ cients (not Z), we

can de�ne homology groups as the dual.

De�nition 22. The singular cohomology groups Hp (M ;R) are de�ned as the dual
space Hom (Hp (M) ;R) : Note that the previous theorem allows us to replace un-
derstand this simply as the dual of the homology of smooth singular chains.

Remark 4. If we were interested in Z, then we would have to consider the dual of
the singular chain complex, and then take the cohomology of that cochain complex.
Since we are doing only R coe¢ cients, we do not need to worry about this extra
detail.

Proposition 23. There is a Mayer-Vietoris sequence for singular cohomology.

We will omit the proof, which can be found by simply dualizing the proof for
singular homology.

7. de Rham�s theorem

De�nition 24. Let �Rn+ =
��
x1; : : : ; xn

�
: xi � 0 for all i

	
: Then a smooth mani-

fold with corners is a topological manifold with boundary such that each point has
a neighborhood di¤eomorphic to an open set in �Rn+:

Remark 5. Most importantly, the simplex �n is a smooth manifold with corners.

Theorem 25 (Stokes�Theorem for Manifolds with Corners). Let M be a smooth,
oriented n-manifold with corners, and let ! be a compactly supported (n� 1)-form
on M: Then Z

M

d! =

Z
@M

!

Remark 6. This needs a de�nition, but the point is that for a smooth manifold
with corners, we only integrate over parts of the manifold away from the corners
in the boundary (i.e., away from codimension 2 and below), and so the boundary
makes sense, as does integration over M and @M:

So now we know how to integrate smooth p-forms over smooth p-simplices (since
these are manifolds with corners), and we can extend by linearity to integration
over smooth p-chains. I.e., if c =

P
ci�

p
i and ! is a smooth p-form, thenZ

c

! =
X

ci

Z
�pi

! =
X

ci

Z
�p

(�pi )
�
!:



COHOMOLOGY 9

Theorem 26 (Stokes�Theorem for Chains). If c is a smooth p-chain in a smooth
manifold M and ! is a smooth (p� 1)-form on M; thenZ

@c

! =

Z
c

d!

This theorem requires checking that the appropriate boundary corresponds to
orientation preserving di¤eomorphisms, i.e., if �p is a smooth p-simplex and ! =
fdxi1 ^ � � � ^ dxip then Z

�p
d! =

Z
�p

��d!

=

Z
�p

d��!

=

Z
@�p

��!:

At this point, @�p means the boundary as a submanifold with the induced Stokes�
orientation. The claim is that if we consider the smooth singular boundary map
@�p =

P
i (�1)

i
[v0; : : : ; v̂i; : : : ; vp] ; that this is induced by the Stokes�orientation.

That is, we need to understand the associated orientations of [v0; : : : ; v̂i; : : : ; vp] :
To do this, it is easier to associate the standard simplex �p with the simplex
[0; e1; : : : ; ep] instead of [e0; : : : ; ep] ; so that we can consider it as a subset of Rp:
Then each of the faces is a codimension one submanifold and we need to com-
pute the induced Stokes�orientation. Each face map is an a¢ ne map (linear plus
translation).
The map taking �p�1 to [v0; : : : ; v̂i; : : : ; vp] is�

x1; : : : ; xp�1
�
!
�
x1; : : : ; xi�1; 0; xi+1; : : : ; xp�1

�
if i 6= 0 and

�
x1; : : : ; xp�1

�
!

0@1� p�1X
j=1

xj ; x1; : : : ; xp�1

1A
if i = 0:
If we choose the orientation dx1 ^ � � � ^ dxn on �p � Rp;we see that for i > 0;

on [0; : : : ; êi; : : : ; ep] ; the vector �ei is outward pointing, and so the face map (map
from �p�1 with orientation dx1 ^ � � � ^ dxp�1 to the face) is orientation reversing if
i is odd and orientation preserving if i is even. For i = 0; the vector e1 is outward
pointing, and so the map is orientation preserving.
It follows that the signs given in the boundary map @ correspond to whether

the face maps are orientation preserving or reversing, and so the integration is
well-de�ned on chains.

De�nition 27. We de�ne the de Rham map J : Hp
dR (M)! Hp (M ;R) as follows:

J ([!]) [�] =

Z
�

!:
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We need to check that this is well-de�ned, i.e., if we take !+d� and �+@� that
we get the same answer, but since ! is closed and � is a cycle, we have

J ([! + d�]) [� + @� ] =

Z
�

! +

Z
�

d� +

Z
@�

! +

Z
@�

d�

=

Z
�

!:

Lemma 28. If F : M ! N is a smooth map, then the following diagram is
commutative:

Hp
dR (N)

F�
�! Hp

dR (M)
# J # J

Hp (N ;R) F�
�! Hp (M ;R)

Proof. Suppose [!] 2 Hp
dR (N) ; so ! is a closed p-form on N: Then for a simplex

�pM on M; we computeZ
�pM

F �! =

Z
�p

(�pM )
�
F �! =

Z
�p

(F � �pM )
�
! =

Z
F��pM

!:

It follows that

F �J ([!]) = F �

"
�pN !

Z
�pN

!

#
=

"
�pM !

Z
F��pM

!

#
and

JF � [!] = J [F �!] =

"
�pM !

Z
�pM

F �!

#
=

"
�pM !

Z
F��pM

!

#
:

�

Lemma 29. The de Rham map is natural with respect to the Mayer-Vietoris se-
quence, i.e., the following diagram is commutative:

� � � �! Hp�1
dR (U \ V ) ��! Hp

dR (M)
k��`��! Hp

dR (U)�H
p
dR (V )

i��j��! Hp
dR (U \ V )

��! Hp+1
dR (M) �! � � �

# J # J # J # J # J
� � � �! Hp�1 (U \ V ;R) ��! Hp (M ;R) k��`��! Hp (U ;R)�Hp (V ;R) i��j��! Hp (U \ V ;R) ��! Hp+1 (M ;R) �! � � �

Proof. We just need to check the connecting homomorphism. Let [!] 2 Hp
dR (U \ V ) ;

so ! is a closed form on U \ V: The connecting homomorphism for de Rham co-
homology is constructed as follows. We �nd smooth forms !U on U and !V on V
such that ! = !U jU\V �!V jU\V ; and then � [!] = [d!U ] where d!U = d!V can be
extended to all of M (and is supported in U \ V ). Now if we take J of [d!U ] ; we
get

J� [!] =

�
�p+1 !

Z
�p+1

d!U

�
:

The connecting homomorphism � for smooth singular cohomology is the dual of
that given in smooth singular homology, and so if [�] 2 Hp (U \ V ;R) ; then
� [�]

��
�p+1

��
= �

�
@�
�
�p+1

��
: And so, �p+1 2 C1p+1 (M) can be written as �

p+1
U +

�p+1V where �U and �V are chains and so � [�]
��
�p+1

��
= �

h
@�p+1U

i
; where
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@�p+1U = �@�p+1V are supported in U \ V: Thus, we have that

�J [!] = �

�
�p !

Z
�p
!

�
=

"
�p+1 !

Z
@�p+1U

!

#
:

Now we look to see that for
�
�p+1

�
2 Hp+1 (M)???Z

�p+1
d!U =

Z
�p+1U +�p+1V

d!U =

Z
�p+1U

d!U +

Z
�p+1V

d!V

=

Z
@�p+1U

!U +

Z
@�p+1V

!V =

Z
@�p+1U

!U �
Z
@�p+1U

!V =

Z
@�p+1U

!;

and so we are done. �

Theorem 30 (de Rham). For every smooth manifold M and every nonnegative
integer p; the de Rham homomorphism J : Hp

dR (M) ! Hp (M ;R) is an isomor-
phism.

Proof. The idea is that we prove it for open subsets of Rn and then patch together.
To do this, we need to show it is true for coordinate balls and their intersections.
We know that for convex subsets of Rn; that Hp

dR (M) = 0 = Hp (M ;R) if p > 0;
and H0

dR (M) is generated by the functions that are constant on each connected
component. We also know that H0 (M) is generated by points in each connected
component, and it follows that the de Rham homomorphism takes constant func-
tions to the element that assigns the point generating H0 (M) the value of the
constant function on its component.
However, intersections of coordinate balls are not necessarily convex, so we need

something stronger. Let�s call any manifoldM such that J : Hp
dR (M)! Hp (M ;R)

is an isomorphism a de Rham manifold. We will show that any manifold M with a
basis for its topology such that every element in the basis and every �nite intersec-
tion of basis elements is de Rham is itself de Rham. We will call such a basis a de
Rham basis. Since coordinate balls are convex in their charts, they are de Rham,
so we need only show that their intersections are de Rham, which means we need
only show that any open set in Rn is de Rham. This is the trickiest part of the
proof.
First, let�s show that if we have a �nite open cover fUigki=1 of M such that each

set and each intersection of sets is de Rham (we call this a �nite de Rham cover),
then M is de Rham. We do this inductively using Mayer-Vietoris. Clearly U0 is
de Rham (by assumption). Suppose Mj = [ji=1Ui is de Rham. We consider the
Mayer-Vietoris sequence, with naturality:

Hp�1
dR (Mj)�Hp�1

dR (Uj+1)
i��j��! Hp�1

dR (Mj \ Uj+1)
��! Hp

dR (Mj [ Uj+1)
k��`��! Hp

dR (Mj)�Hp
dR (Uj+1)

i��j��! Hp
dR (Mj \ Uj+1)

# J # J # J # J # J
Hp�1 (Mj ;R)�Hp�1 (Uj+1;R)

i��j��! Hp�1 (Mj \ Uj+1;R)
��! Hp (Mj [ Uj+1;R)

k��`��! Hp (Mj ;R)�Hp (Uj+1;R)
i��j��! Hp (Mj \ Uj+1;R)

The four outer J maps are isomorphisms by assumption, so by the Five Lemma,
so is the middle one.
Now we show that if a manifold M has a de Rham basis, then it is de Rham.

Suppose M has a de Rham basis. We can �nd an exhaustion function � on M;
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and so for each j 2 N, the set Aj such that j � � � j + 1 is compact, and so it
has a �nite de Rham cover (a �nite subcover of the de Rham basis). We can also
construct de Rham covers on A0j ; the set such that j� 1

2 � � � j+ 3
2 ; and by using

intersections, we can make the covers for Aj such that they are inside A0j : If we let
Bj be the union of the open sets in the de Rham cover for Aj ; we have that Bj is
open, has a �nite de Rham cover, and that Bj \ B` is empty unless ` = j + 1 or
` = j � 1: Since the cohomology splits into direct products for disjoint unions, it
is clear that any disjoint union of de Rham manifolds is de Rham, thus we have a
�nite de Rham cover for M given by

A =
[
j odd

Aj

B =
[

j even

Aj

(it is clear that the intersection is a disjoint union of de Rham manifolds) and so
M = A [B is de Rham.
It follows that every open set in Rn is de Rham, since it has a basis of balls,

and intersections of balls are convex. Furthermore, every manifold has a de Rham
basis, and is thus de Rham. �

8. Poincaré duality

Theorem 31 (Poincare duality). IfM is a compact, orientable smooth n-manifold,
then dimHp

dR (M) = dimH
n�p
dR (M) : This comes from the Poincaré duality map

PD : Ap (M)! An�p (M)�

given by

PD (!) =

�
� !

Z
M

! ^ �
�
:

Note that to prove the theorem, we need compactly supported cohomology
groups Hp

c (M) ; generated by the chain complex of compactly supported forms,
and the Poincaré duality map for an arbitrary (possibly noncompact) manifold is

PD : Ap (M)! An�pc (M)
�

given by the same formula.

Example 1. We have seen that Hn
dR (S

n) �= H0
dR (S

n) and all others groups are
zero.

Example 2. For any orientable surface �; we see that H2
dR (�)

�= R �= H0
dR (�) ;

and the Poincaré duality theorem does not give a restriction on the middle coho-
mology group H1

dR (�) :

Corollary 32. The Euler characteristic for an odd-dimensional closed, orientable
manifold is zero. (Thus the Euler characteristic is not a very meaningful invariant
for, say, 3-dimensional manifolds.)


