
COVERING SPACES

DAVID GLICKENSTEIN

1. Introduction and Examples

We have already seen a prime example of a covering space when we looked at
the exponential map t! exp (2�it) ; which is a map R! S1: The key property is
tied up in this de�nition.

De�nition 1. A covering space of a space X is a space ~X together with a map
p : ~X ! X such that there exists and open cover fU�g of X such that for each
�; p�1 (U�) is a disjoint union of open sets in ~X; each of which is mapped by p
homeomorphically onto U�: (Draw picture of maps).

Remark 1. Sometimes surjectivity is required, which prevents p�1 (U�) to be non-
empty. Hatcher does not make this requirement.

Let�s look at some examples:

� We already looked at the exponential map, which can be visualized as the
map of a helix to a circle.

� There are other coverings of the circle, say by z ! zn in the complex plane.
These are all maps S1 ! S1:

� Lots of coverings of S1 _ S1: Try all covers with two preimages and also
simply connected cover. See page 58 in Hatcher.

Remark 2. Usually we will study path connected covers, otherwise we can always
make lots of disjoint copies of the covers.

We will classify all covers of most spaces in terms of the fundamental group.

2. Lifting

The main properties we will need are lifting properties. We have already seen
these in the case of the exponential map.

De�nition 2. Given a covering p : ~X ! X; a lifting (or lift) of a map f : Y ! X

is a map ~f : Y ! ~X such that f = p � ~f:

Proposition 3 (Homotopy lifting property). Given a covering space p : ~X ! X,
a homotopy ft : Y ! X; and a lifting ~f0 : Y ! ~X of f0; there is a unique homotopy
~ft : Y ! ~X that lifts ft:

Proof. The proof is exactly the same as that for R! S1: �

Remark 3. Sometimes called the covering homotopy property.
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As we have seen , restricting Y to be a point gives a path lifting property for
covering spaces, so for any path f : I ! X; given a lift of f (0) ; i.e., a point in
~X that projects via p to f (0) ; the path can be uniquely lifted to a path in ~X:

Note that even if f is a loop, the lifting ~f may not be a loop. This is extremely
important.

Proposition 4. The induced map p� : �1
�
~X; ~x0

�
! �1 (X;x0) is injective. The

image subgroup p�
�
�1

�
~X; ~x0

��
consists of homotopy classes of loops in X based

at x0 that lift to loops in ~X based at ~x0:

Proof. Consider an element in the kernel represented by a loop ~f : I ! ~X: That
means there is a homotopy of f = p� ~f to the constant loop. Note that, by de�nition,
~f is a lift of f; and so we can lift the homotopy ft by the homotopy lifting property
to a homotopy ~ft: Since f1 is the constant loop, ~f1 must be the constant loop, and
so we get that ~f is homotopic to a constant loop and p� is injective.

For the second statement, clearly such loops must be in p�
�
�1

�
~X; ~x0

��
: Con-

versely, any loop in the image is homotopic to the image of a loop in ~X: �
Note that if p : ~X ! X is a covering map, then the cardinality of p�1 (x) is

locally constant, and if X is connected, then then the cardinality is the same for
every x 2 X: If the cardinality is �nite, say n; then we say p is an n-sheeted covering
or that n is the number of sheets.

Proposition 5. The number of sheets of a covering space p :
�
~X; ~x0

�
! (X;x0)

with both X and ~X path connected equals the index
h
�1 (X;x0) : p�

�
�1

�
~X; ~x0

��i
(the index of p�

�
�1

�
~X; ~x0

��
in �1 (X;x0)).

Proof. For any loop g 2 X based at x0; let ~g denote its (unique!) lift starting at ~x0:

Given [h] 2 H = p�

�
�1

�
~X; ~x0

��
; we have that ~h is a loop in ~X based at ~x0: Thus�

~h � ~g
�
(1) = ~g (1) for any loops g and h such that [h] 2 H: It follows that there is

a well-de�ned map � : Hn�1
�
~X; ~x0

�
! p�1 (x0) given by � (H [g]) = ~g (1) : We

need to show that � is a bijection.
Since ~X is path connected, for any ~x 2 p�1 (x0) ; there is a path ~g from ~x0 to ~x;

and it must project to a loop g in X based at x0: Thus � is surjective.
Suppose � (H [g]) = � (H [g0]) : Then ~g (1) = ~g0 (1) ; and so we have that g � �g0

lifts to a loop in ~X; i.e., [g] [g0]�1 2 H; and so H [g] = H [g0] : �
We can use path lifting to produce liftings of other maps (not just paths and

homotopies). First recall the following de�nition.

De�nition 6. A space X is locally path connected if for every point x 2 X
contained in an open set U; there is an open set V � U containing x that is path
connected.

Proposition 7 (Lifting criterion). Let p :
�
~X; ~x0

�
! (X;x0) be a covering space

and f : (Y; y0) ! (X;x0) be a map, with Y path connected and locally path con-
nected. Then a lift

~f : (Y; y0)!
�
~X; ~x0

�
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of f exists if and only if f� (�1 (Y; y0)) � p�
�
�1

�
~X; ~x0

��
:

Proof. Clearly if a lift ~f exists, then p� ~f� = f�; so

f� (�1 (Y; y0)) = p� ~f� (�1 (Y; y0))

and the inclusion is clear.
Suppose f� (�1 (Y; y0)) � p�

�
�1

�
~X; ~x0

��
:We wish to de�ne the lift ~f by lifting

paths. We need ~f (y0) = ~x0 2 p�1 (x0) : Now consider y 2 Y: Since y is path
connected, there is a path 
 in Y from y0 to y: This gives a path f �
 in X that can
be lifted to a unique path]f � 
 starting at ~x0:We de�ne ~f (y) =]f � 
 (1) : Certainly
p � ~f = f; but we need to make sure that ~f is well-de�ned and continuous.
Suppose 
0 is another path from y0 to y: Then there is a lifted path f̂ � 
0 that

could have been used instead. Then we have a loop �
 � 
0 in Y based at y0; and we
know by assumption that

f� [�
 � 
0] = p� [�]
for some loop � in ~X based at ~x0; i.e., there is a loop p�� homotopic to f � (�
 � 
0) :
This homotopy can be lifted to a homotopy between ^f � (�
 � 
0) and ]p � � = �

(by uniqueness of lifting). Since � is a loop, so must ^f � (�
 � 
0): It follows that
f̂ � 
0 (1) = ]f � 
 (1) (again by uniqueness of lifting).
To show that the lift ~f is continuous, we will show it is continuous at each point

y; i.e., for every y and open setW � ~X containing f (y) ; there is an open set V � Y
containing y such that f (V ) � W: Consider y 2 Y and let ~U be a neighborhood
of ~f (y) such that p : ~U ! U is a homeomorphism (for some neighborhood U of
f (y)): [Note: given any open set W; there is a subset like ~U since ~X is a covering
space]. Now, consider

�
f � p�1

��1 ~U; which is an open set in Y containing y: Since
Y is locally path connected, there is a path connected open set V �

�
f � p�1

��1 ~U
containing y; and so for any y0 2 V; there is a path from y0 to y0 that goes through
y: Thus ~f (V ) gets mapped into ~U by the uniqueness of path lifting. �

Proposition 8 (Unique lifting property). Given a covering space p : ~X ! X and
a map f : Y ! X with two lifts ~f1; ~f2 : Y ! ~X that agree at one point in Y; then
if Y is connected, these two lifts agree on all of Y:

Proof. We will consider the set S of points where ~f1 and ~f2 agree, which is nonempty
by assumption. Let y 2 Y and let U be an evenly covered neighborhood of f (y) :
If y =2 S; then ~f1 (y) 6= ~f2 (y) and so ~f1 (y) 2 ~U1 and ~f2 (y) 2 ~U2 such that both
open sets are homeomorphic to U and the two sets are disjoint. It follows that
~f�11

�
~U1

�
\ ~f�12

�
~U2

�
is an open neighborhood of y not in S; and so S is closed.

Similarly, if y 2 S; then ~f1 (y) = ~f2 (y) 2 ~U1: Since the preimage of an open set is

open, ~f�11
�
~U1

�
\ ~f�12

�
~U1

�
must map to the single sheet, and so the two images

must be equal and there is an open neighborhood of y in S; so S is open. Since S
is open, closed, and nonempty and Y is connected, S = Y: �

3. Classification of covering spaces

The main things we will prove are the following:
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Theorem 9. If a space Y is path connected and locally path connected, then Y has
a simply connected covering space if and only if Y is semilocally simply connected.

Theorem 10. Let X be path connected, locally path connected, and semilocally
simply connected. Then there is a bijection between the set of basepoint preserving
isomorphism classes of path connected covering spaces

p : (X; ~x0)! (X;x0)

and the set of subgroups of �1 (X;x0) obtained by associating the subgroup p�
�
�1

�
~X; ~x0

��
to the covering space

�
~X; ~x0

�
: If basepoints are ignored, this correspondence gives a

bijection between isomorphism classes of path connected covering spaces p : ~X ! X

and conjugacy classes of subgroups of �1
�
~X; ~x0

�
:

De�nition 11. A space X is semilocally simply connected if each point x 2 X
has a neighborhood U such that ���1 (U; x) � �1 (X;x) is trivial.

Remark 4. Another way to express this is that for the neighborhood U; any loop
based at x in U is homotopic to the trivial loop, but that homotopy may take the
loop outside U: If the homotopy were required to stay in U; the condition would be
called locally simply connected.

It is clear that if a space X admits a simply connected covering space ~X; then
it must be semilocally simply connected, since given any point x 2 X; and a loop

 based at x; we can let U be an evenly covered neighborhood of X: The loop can
be lifted to a path ~
 in the universal cover ~X and since 
 � U and U is evenly
covered, it follows that ~
 is in only one sheet, and thus is a loop. The loop ~
 is
homotopic to the trivial loop since ~X is simply connected. The projection of the
homotopy will become a homotopy of 
 to the trivial loop. Thus X is semilocally
simply connected.

3.1. Simply connected covering space. In this section we will show that if X
is path connected, locally path connected, and semilocally simply connected, then
X has a simply connected covering space, called the universal covering space (for
reasons we will see later).
Note that if ~X is a simply connected covering space, then given a point ~x0 2

~X; one can identify points ~x 2 ~X with homotopy classes of paths [~
] such that
~
 (0) = ~x0 and ~
 (1) = ~x: By path and homotopy lifting, every path in X starting
at x0 = p (~x0) lifts to a path in ~X starting at ~x0; as do homotopies. Thus homotopy
classes of paths in X correspond to points in ~X (by unique path lifting and path
connectedness, there is a path in X corresponding to each point in ~X):
We will de�ne the universal covering space in exactly this way:

~X = f[
] : 
 is a path in X with 
 (0) = x0g :
The map is

p ([
]) = 
 (1) ;

which is well-de�ned since homotopies �x endpoints. Now, we need to give ~X a
topology that makes p into a covering map (so we need to show that every point
in X has an evenly covered neighborhood, and that p is continuous). Finally, we
need to show that ~X is simply connected.
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We will give ~X a topology by de�ning a neighborhood basis. Recall that a
neighborhood basis is a collection of sets such that every point is in one of the
sets, and for any point that is in the intersection of two such sets, there is a third
set in the collection containing the point that is contained in the intersection. We
will de�ne neighborhoods of each point as follows. Let U be a collection of path
connected open sets that cover X (these exist because X is locally path connected).
Now de�ne

U[
] = f[
 � �] : � is a path in U with � (0) = 
 (1)g :
Notice that U[
] depends only on the homotopy class of 
 in X (also note that the
homotopy class is that homotopy class in X). Notice that p : U[
] ! U is surjective
since U is path connected.
Important observation: if ��p� : �1

�
U[
]

�
! �1 (U) ! �1 (X) is trivial (if it

is true for one basepoint, it is true for all since U is path connected), then p is
injective, since di¤erent choices of � are homotopic in X: If X is semilocally simply
connected, then we may choose the collection U so that each U 2 U has the property
that the second map in the composition is trivial, so the composition is trivial, too.
Thus p : U[
] ! U is a bijection.

Claim 1. U[
] = U[
0] if [
0] 2 U[
]:

Proof. If [
0] 2 U[
]; then 
0 ' 
 � � in X: So all elements of U[
0] have the form
[
 � � � �] for some path � in U: But then � � � is an appropriate path in U; and so
U[
0] � U[
]: The other inclusion follows similarly. �
In particular, we have that if [�] 2 U[
] \ U[
0], then U[
] = U[�] = U[
0]: Now

suppose [�] 2 U[
] \ V[
0]: Then U[
] = U[�] and V[
0] = V[�]: If W � U \ V; and
W � U and � (1) 2W; then W[�] � U[
] \ V[
0]: Since every [
] 2 ~X is contained in
U[
]; it follows that

�
U[
]

	
[
]
form a basis for a topology. So we need to choose U so

that each set is path connected, pushes forward trivially in the fundamental group,
and is a basis for the topology of X: This can be done as follows by letting U be the
set of all path connected open sets U such that �1 (U)! �1 (X) is trivial. Then if
U \ V 6= ?; then there is a path connected open set contained in the intersection
(around any point) since X is locally path connected, and using inclusion, it must
still satisfy that the fundamental group maps trivially into the fundamental group
of X:
We can now see that p : U[
] ! U is a homeomorphism. The map p is continuous

since for any point p ([�]) = � (1) 2 V � U; where V is open, we have that
p(V[�]) = V . It is open since any point [�] 2 U[
] has an open neighborhood V[
0]
whose image is V 2 U ; and hence open.
The same argument shows that p : ~X ! X is continuous. It is a covering space:

Given any x 2 X; x is contained in some U 2 U . We may then consider the sets U[
]
for all homotopy classes [
] of paths from x0 to x: Each set U[
] is homeomorphic
to U via p: For any two classes [
] ; [
0] if U[
] \ U[
0] 6= ? then the two sets are
equal. Thus we �nd that p�1 (U) is a disjoint collection of sets homeomorphic to
U via p:

Claim 2. ~X is simply-connected.

Proof. Given x0 2 X; there is a natural basepoint for ~X given by the homotopy
class of the constant loop [x0] : We �rst show that ~X is path connected: given any
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point [
] 2 ~X; there is the path

t!
h

j[0;t]

i
= [s! 
 (st)] :

in ~X that connects [x0] to [
] :
Let�s take the basepoint of ~X to be a constant loop [x0] : Let ~� (s) be a loop in

~X based at [x0] : Then 
 (s) = p � ~� (s) is a loop in X based at x0:
Claim: The path ~� (t) = [s ! 
 (st)] is a lift of 
 such that ~� (0) = [x0] : This

follows because p
�
~� (t)

�
= 
 (t) ; so it is a lift.

It follows by uniqueness of lifts that ~� (t) = ~� (t) : Since ~� is a loop, we must
have that ~� (0) = ~� (1) ; which means that [x0] = [
] : Hence 
 is null-homotopic.
Since p� is injective, this implies that ~� is null homotopic, and hence ~X is simply
connected. �

Proposition 12. If ~X1 ! X is a covering space and ~X ! X is a simply connected
covering space, then ~X is a covering space of ~X1: Thus there is a partial ordering
of covering spaces.

Proof. Since �1
�
~X
�
is trivial, the lifting criterion says that the map ~X ! X can

be lifted to ~X ! ~X1: The fact that this is a covering can be checked. �

For this reason, a simply connected covering space is called a universal cover. In
fact, it is unique up to isomorphism.

De�nition 13. An isomorphism between covering spaces p1 : ~X1 ! X and p2 :
~X2 ! X is a homeomorphism f : ~X1 ! ~X2 such that p2 � f = p1:

Proposition 14. If p1 : ~X1 ! X and p2 : ~X2 ! X are covering spaces and ~X1
and ~X2 are simply connected, then the covering spaces are isomorphic.

Proof. As in the previous proposition, the projection maps can be lifted. If we
are careful with the points, we can ensure that the two lifts are inverses of each
other. �

3.2. Subgroups of �1. In fact, our understanding of simply connected coverings
in terms of paths and the existence of simply connected coverings gives a more
general result.

Proposition 15. Suppose X is path connected, locally path connected, and semilo-
cally simply connected. Then for every subgroup H < �1 (X;x0) there is a covering
space p : XH ! X such that p� (�1 (XH ; ~x0)) = H for a suitably chosen basepoint
~x0 2 XH :

Proof. Let ~X be the universal cover. We know that points in ~X correspond to
homotopy classes of paths in X: We now de�ne XH as the quotient of ~X by the
equivalence relation

[
] � [
0] i¤ 
 (1) = 
0 (1) and
�

 � 
0

�
2 H:

(It is an equivalence relation since H is a group!) Notice that for the neighborhoods
U[
] and U[
0]; if [
] � [
0] then the whole neighborhoods are identi�ed since [
 � �] �
[
0 � �] : It follows that XH is a covering space.
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Choose ~x0 to be the equivalence class of the constant loop at x0: Clearly, if

[
] 2 H; then 
 lifts to the loop t!
h

j[0;t]

i
in XH (since [
] � [x0]). Similarly, if

� is a loop in XH based at ~x0; then (p � �) (t) is a loop in Z and � (t) =
h
p � �j[0;t]

i
:

Since � is a loop, we have that [p � �] 2 H: Thus p� (�1 (XH ; ~x0)) = H: �
This completes the proof of the �rst part of the classi�cation theorem (since every

covering space induces a subgroup of �1 (X;x0) by pushing froward the fundamental
group by p. For the second statement, we need to understand the correspondence
between isomorphism classes of covering spaces and the subgroups they generate.

Proposition 16. Two covering spaces p1 : ~X1 ! X and p2 : ~X2 ! X are isomor-
phic via an isomorphism � such that � (~x1) = ~x2 if and only if

(p1)� �1

�
~X1; ~x1

�
= (p2)� �1

�
~X2; ~x2

�
:

Proof. If isomorphic, then p1� = p2 and p2��1 = p1; so the conclusion follows.
Conversely, if these are equal, we can lift the covering maps, and by unique lifting
(when basepoints are speci�ed), we get an isomorphism. �

Now suppose that p1 : ~X1 ! X and p2 : ~X2 ! X are isomorphic via a
map � : ~X1 ! ~X2. We need to show that the two correspond to the same

conjugacy class in �1 (X) : By the proposition, we have that (p1)� �1
�
~X1; ~x1

�
=

(p2)� �1

�
~X2; � (~x1)

�
: However, for any other point ~x2 2 p�12 (x0) ; we have that

�1

�
~X2; � (~x1)

�
= �h

h
�1

�
~X2; ~x2

�i
for some path h since ~X2 is path connected.

Since h is a path from � (~x1) to ~x2; it pushes forward to a loop in X; and so there
is an element g 2 �1 (X;x0) such that

g�1
h
(p2)� �1

�
~X2; ~x2

�i
g � (p2)� �1

�
~X2; � (~x1)

�
:

The other inclusion follows similarly.
Conversely, given a group H � �1 (X;x0) and a conjugate subgroup g�1Hg; we

can lift g and get an isomorphism of the covering space for H: This completes the
proof of the theorem.

4. Deck transformations

De�nition 17. An (self-) isomorphism of covering spaces ~X ! ~X is called a deck

transformation. These form a group G
�
~X
�
:

Example 1. For R! S1; the deck transformations are the translations of R.

Example 2. For an n-sheeted covering S1 ! S1; the deck transformations form
the group Zn.

Notice that by the uniqueness of liftings, a deck transformation is uniquely de-
termined by where it sends the basepoint. That says that it is determined by loops
in the base! But what is the relationship between loops in the base (subgroups of
the fundamental group) and deck transformations?

De�nition 18. A covering space ~X ! X is normal if for each x 2 X and each
pair of lifts ~x; ~x0 2 p�1 (x) ; there is a deck transformation taking ~x to ~x0:
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Example 3. Look at the coverings of S1 _ S1: Which ones are normal?

Proposition 19. Let p :
�
~X; ~x0

�
! (X;x0) be a path-connected covering space of

the path-connected, locally path-connected space X; and let

H = p��1

�
~X; ~x0

�
� �1 (X;x0) :

Then:

(1) The group of deck transformations G
�
~X
�
is isomorphic to N (H) =H; where

N (H) is the normalizer subgroup.
(2) The covering space is normal i¤ H is a normal subgroup of �1 (X;x0) :

Corollary 20. If ~X is a normal covering, then G
�
~X
�
�= �1 (X;x0) =H: Thus if

~X is the universal cover, then G
�
~X
�
�= �1 (X;x0) :

Proof. We saw earlier that changing the basepoint ~x0 to ~x1 corresponds to conjugat-

ing the p��1
�
~X; ~x0

�
in �1 (X;x0) by an element [
] 2 �1 (X;x0) : Thus, [
] 2 N (H)

if

p��1

�
~X; ~x0

�
= p��1

�
~X; ~x1

�
:

By the lifting criterion, this is equivalent to the existence of a deck transformation
taking ~x0 to ~x1: The covering space is normal if there is a complete set of deck
transformations, which is equivalent to N (H) = �1 (X;x0) :

We have shown that there is a surjective map � : N (H) ! G
�
~X
�
sending

[
] to a deck transformation � ([
]) taking ~x0 to ~x1 (where ~
 is a lift of 
 such
that ~
 (0) = ~x0 and ~
 (1) = ~x1). Note that this is a homomorphism: since if
[
] ; [
0] 2 N (H) we see that such that 
 � 
0 lifts to ~
 � � (~
0) : Thus the deck
transformation is determined by ~x0 goes to � (� 0 (~x0)) ; and so [
 � 
0] corresponds
to �� 0:
The kernel of � consists of those loops [
] 2 N (H) that lift to loops, i.e., precisely

p��1

�
~X; ~x0

�
= H: �

Since the universal cover has deck transformation group equal to the fundamental
group, if you know the fundamental group, you can construct the universal cover by
starting with a neighborhood of the basepoint and then using the fundamental group
as group of deck transformations to see the rest of the covering space. Consider
R2 ! S1 � S1:

Example 4. Consider the universal covering of the Klein bottle, which can be
constructed from the fundamental domain by putting two together to get a torus,
and then translating to all of R2: It is not hard to see that the deck transformation
group is Z n Z, where (m1; n1) (m2; n2) = (m1 + (�1)n1 m2; n1 + n2) : Since R2
is simply connected, this group should be isomorphic to the fundamental group,
which we calculated to be



a; b j abab�1 = 1

�
: We can show that these groups are

isomorphic directly to con�rm this:

� : Z � Z! Z n Z
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is generated by � (a) = (1; 0) and � (b) = (0; 1) : It follows that

� (am) = (m; 0)

� (bn) = (0; n)

� (ambn) = (m;n)

�
�
abab�1

�
= (0; 0) :

Thus we know that � is a surjection and that the normal subgroup generated by
abab�1 is in the kernel. We can see that this is the entire kernel by considering the
induced map

�� :


a; b j abab�1 = 1

�
! Z n Z.

Since the relation ab = ba�1 allows one to write any element of the group


a; b j abab�1 = 1

�
as ambn and the map from these elements to Z n Z is injective, �� is an isomor-
phism.

Note that group actions can be used to construct coverings, but you have to
be careful that the regularly covered neighborhoods don�t get messed up. The
following condition is key:

De�nition 21. A group action of G on a space Y is an injective homomorphism
G ! Homeo(X): The group action is a covering space action if for each y 2 U
there is a neighborhood U of y such that all the images of U are disjoint (i.e.,
g1 (U) \ g2 (U) 6= ? implies that g1 = g1).

The quotient of a space by a covering space action gives a covering space:

De�nition 22. Given a group action G on a space Y; the orbit space Y=G is the
space of orbits fGy : y 2 Y g given the topology of the quotient Y= � where y � y0
if Gy = Gy0:

Example 5. For a normal covering space ~X ! X with deck transformation group

G
�
~X
�
; we have ~X=G

�
~X
�
� X:

Proposition 23. If G is a covering space action on a space Y; then:

(1) The quotient map p : Y ! Y=G is a normal covering space.
(2) G is the group of deck transformations if Y is path connected.
(3) G is isomorphic to �1 (Y=G) =p��1 (Y ) of Y is path connected and locally

path connected.

Proof. Given an open set U as in the de�nition of covering space action, the quo-
tient will identify the disjoint sets g (U) : By the quotient topology, p restricts to a
homeomorphism from g (U) to its image p (U) for each g 2 G; and so p is a covering
space. Each element of G acts as a deck transformation, and clearly one can get
from any element in the �ber to any other (to get from g (x0) to g0 (x0) ; simply use
the element g0g�1).
Certainly G is a subgroup of the deck transformation group. If Y is path con-

nected, then deck transformations are uniquely determined by where they send a
point (by unique lifting!) so G must be the entire deck transformation group.
The last statement follows from our theorem on deck transformations on normal

covering spaces. �
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Remark 5. Being a covering space action is related to being a free action and a
properly discontinuous action. Free, properly discontinuous actions on a Hausdor¤
space are covering space actions.

Corollary 24. If Y is simply connected and G is a covering space action on Y; then
�1 (Y=G) �= G: Under this isomorphism, a loop in Y=G corresponds to an element
g 2 G as the projection of a path from the basepoint y0 2 Y to g (y0) :

Example 6. The space RPn is gotten as Sn=Z2; where the group Z2 is generated
by the antipodal map x! �x: Note that this is a covering space action. For n � 2;
Sn is simply connected, so it follows that �1 (RPn) �= Z2 for n � 2: It is generated
by a loop between two antipodal points.


