
HOMOLOGY

DAVID GLICKENSTEIN

1. Introduction

We will explore both simplicial and singular homology.

2. �-Complexes

We can write the torus S1 � S1; RP2; and the Klein bottle K2 as two triangles
with their edges identi�ed (draw picture). For simplicial homology, we will construct
spaces by identifying generalized triangles called simplices.

De�nition 1. An n-dimensional simplex (or n-simplex) �n = [v0; v1; : : : ; vn] is the
smallest convex set in a Euclidean space Rm containing the n+1 points v0; : : : ; vn:
We usually specify that for an n-simplex, we have that the points are not contained
in any hyperplane of dimension less than n: The standard n-simplex is

�n =

(
(t0; : : : ; tn) 2 Rn+1 :

nX
i=0

ti = 1 and ti � 0 for all i = 0; : : : ; n
)
:

De�nition 2. We call 1-simplices vertices, and 2-simplices edges. Given a simplex
�n; any (n� 1)-dimensional subsimplex is called a face.

It will be important to keep track of the ordering of the vertices, so [v0; v1] 6=
[v1; v0]: Note that given any n-simplex, it induces an ordering on smaller simplices.
For instance, an edge can be written [vi; vj ] where i < j: For any sub-simplex, we
can use the same ordering as in the larger simplex.
Once we have speci�ed the ordering to the vertices in �n, we have a natural

linear transformation of the standard n-simplex to another �n; i.e.,

�n =

(
nX
i=1

tivi :
nX
i=0

ti = 1 and ti � 0 for all i = 0; : : : ; n
)

so the map is (t0; : : : ; tn)!
Pn

i=1 tivi: This map gives the barycentric coordinates
for points in the simplex.

De�nition 3. The union of all of the faces of �n is called the boundary of �n;
and is denoted as @�n: (If n = 0; then the boundary is empty.) The open simplex

is interior of �n, i.e.,
�
�n = � n @�

De�nition 4. A �-complex structure on a space X is a collection of maps �� :
�n ! X; with n depending on �; such that

(1) The restriction of ��j �
�n

is injective, and each point of X is in the image
of exactly one such restriction.
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(2) Each restriction of �� to a face of �n is one of the maps �� : �n�1 ! X:
We identify the faces of �n with �n�1 by the canonical linear homeomor-
phism that preserves the ordering of the vertices.

(3) A set A � X is open if and only if ��1� (A) is open in �n for each ��:

Note that (3) give shows how to give a topology to a quotient of disjoint simplices
identi�es according to (2). These can be built inductively on n by attaching new
simplices (and possibly identifying sub-simplices.

Remark 1. Not all spaces admit a �-complex structure. In particular, the space
X must be Hausdor¤.

By the construction, the set X is a disjoint union of open simplices en� of various

dimensions. The open simplex is the homeomorphic image �n�
� �
�n
�
of

�
�n, and we

call the map �� a characteristic map.

3. Simplicial homology

De�nition 5. Suppose X has a �-complex structure. Let �n (X) denote the free
abelian group generated by the open n-simplices en� of X: Elements of �n (X) are
called n-chains, and can be written as a �nite formal sumX

�

c�e
n
�

with c� 2 Z:

Remark 2. We could also replace en� with the characteristic maps �
n
� and consider

these as chains.

We can consider the boundary of a simplex as a chain:

@ [v0; v1] = [v1]� [v0]
@ [v0; v1; v2] = [v1; v2]� [v0; v2] + [v0; v1]

@ [v0; v1; v2; v3] = [v1; v2; v3]� [v0; v2; v3] + [v0;v1; v3]� [v0; v1; v2]

This allows us to de�ne a boundary homomorphism:

De�nition 6. For a �-complex X, the boundary homomorphism @n : �n (X) !
�n�1 (X) is generated by

@n (�
n
�) =

nX
j=0

(�1)j �n�j[v0;v1;:::;v̂j ;:::;vn] :

Lemma 7. The composition �n (X)
@n! �n�1 (X)

@n�1! �n�2 (X) is zero.

Proof. We compute

@n�1 �j[v0;v1;:::;v̂j ;:::;vn] =
j�1X
i=0

(�1)i �j[v0;v1;:::;v̂i;:::;v̂j ;:::;vn]+
nX

i=j+1

(�1)i�1 �j[v0;v1;:::;v̂j ;:::;v̂i;:::;vn]
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@n�1@n (�) = @n�1

0@ nX
j=0

(�1)j �j[v0;v1;:::;v̂j ;:::;vn]

1A
=

nX
j=0

j�1X
i=0

(�1)i+j �j[v0;v1;:::;v̂i;:::;v̂j ;:::;vn] +
nX
j=0

nX
i=j+1

(�1)i+j�1 �j[v0;v1;:::;v̂j ;:::;v̂i;:::;vn]

=
X
i<j

(�1)i+j �j[v0;v1;:::;v̂i;:::;v̂j ;:::;vn] +
X
j<i

(�1)i+j�1 �j[v0;v1;:::;v̂j ;:::;v̂i;:::;vn]

= 0

since we can switch the roles of i and j in the second sum. �

De�nition 8. The simplicial homology groups are de�ned as H�
n (X) = ker @n= Im @n+1:

This makes sense since @n+1@n = 0 implies that Im @n+1 � ker @n:

De�nition 9. Elements of ker @ are called cycles. Elements of Im @ are called
boundaries. One often sees the notation Zn (X) = ker @n and Bn (X) = Im @n+1;
and so homology is written

Hn (X) = Zn (X) =Bn (X) :

The great thing about simplicial homology is that it can be computed reasonably
easily given a �-complex structure on X:

Example 1. Consider the torus given as

�2
�
S1 � S1

�
=


�21 ; �

2
2

�
�1
�
S1 � S1

�
=


�11 ; �

1
2 ; �

1
3

�
�0
�
S1 � S1

�
=


�01
�

such that

@2�
2
1 = �11 � �12 + �13

@2�
2
2 = ��11 + �12 � �13

and all other maps are zero. Thus

H�
2 (X) =



�21 + �

2
2

� �= Z
H�
1 (X) =



�11 ; �

1
2 ; �

1
3

�
=


�11 � �12 + �13 ;��11 + �12 � �13

� �= Z� Z
H�
0 (X) =



�10
� �= Z

4. Singular homology

De�nition 10. A singular n-simplex in a space X is a (continuous) map � :
�n ! X: The group of singular n-chains Cn (X) is the free abelian group generated
by singular n-simplices on X; so elements are �nite sums formX

i

ci�
n
i :

The boundary map @n : Cn (X)! Cn�1 (X) is de�ned by

@n� =
nX
i=0

(�1)i �j[v0;:::;v̂i;:::;vn] :
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Note that implicit in this de�nition is the identi�cation of [v0; : : : ; v̂i; : : : ; vn] with
�n�1: Also note that @n�1@n = 0 by the same proof as with �-complexes. Thus it
is reasonable to de�ne the homology theory.

De�nition 11. The singular homology groups are de�ned as

Hn (X) = ker @n= Im @n+1:

Here are some comments about singular homology groups:

� It is clear that homeomorphic spaces have isomorphic singular homology
groups (not clear for �-complexes).
� The chain groups are enormous, usually uncountable. It is not clear that if
X is a �-complex with �nitely many simplices that the homology is �nitely
generated or that Hn (X) = 0 for n larger than the largest dimensional
simplex in the �-complex (both trivial for simplicial homology).

Remark 3. There is a construction in Hatcher showing that singular homology
is actually an instance of simplicial homology, though the simplicial chains are
generally uncountably generated.

Remark 4. Hatcher also describes a geometric way to think about homology in
terms of images of manifolds.

Proposition 12. If X is a space with path components X�; there is an isomorphism
of Hn (X) with the direct sum

L
�Hn (X�) :

Proof. Since the image of a simplex is connected, each simplex lies on one path
component, and hence Cn (X) splits into a direct sum. Since the boundaries are in
the same component, we get that the boundary splits into Cn (X�)! Cn�1 (X�) ;
and so do the kernel and images, so this becomes an isomorphism on homology. �

Proposition 13. If X is nonempty and path connected, then H0 (X) �= Z. Hence
for any space, H0 (X) is isomorphic to a direct sum of Z�s, one for each path
component.

Proof. De�ne the homomorphism

" : C0 (X)! Z

by

"

 X
i

ci�i

!
=
X
i

ci:

If X is nonempty, then clearly this is surjective. We claim that ker " = Im @1; which
would imply that

H0 (X) = C0 (X) = Im @1 = C0 (X) = ker " �= Z.
If
P

i ci�i 2 Im @1; then
Elements of Im @1 are integer linear combinations of elements of the form [vi]�

[vj ] ; and " of these is zero, so Im @1 � ker ": Now given a chain in ker "; it can be
written as a sum

P
([vi]� [vj ]) ; and each of these can be realized as the boundary

of a path from vi to vj since both are path components. Thus ker " � Im @1: �

Proposition 14. Hn (pt) = 0 for n > 0 and H0 (pt) �= Z.
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Proof. We know the last statement since a point has one path component. Each
chain complex Cn (pt) is generated by one simplex. Since the boundary gives

@�n =
nX
i=0

(�1)j �n�1;

we have that @ = 0 if n is odd and the identity if n is even. Thus we get the chain
complex

� � �
�=! Z 0! Z

�=! Z 0! Z
�=! Z 0! Z! 0:

The result on homology follows. �

De�nition 15. The reduced homology groups ~Hn (X) are the homology groups of
the augmented chain complex

� � � ! C2 (X)
@2! C1 (X)

@1! C0 (X)
"! Z! 0:

We have already seen that "@1 = 0; we have that " induces a map H0 (X)! Z,
and the kernel of this map is precisely ~H0 (X) : It follows that

H0 (X) �= ~H0 (X)� Z
Hn (X) �= ~Hn (X) if n > 0:

5. Homotopy invariance

While it is clear that homology groups are invariant under homeomorphism, it is
also true that it is invariant under homotopy equivalence. We �rst look at induced
homomorphisms.

De�nition 16. Given a continuous map f : X ! Y; there is an induced map
f# : Cn (X)! Cn (Y ) given by

f# (�
n) = f � �n

and extended linearly to chains.

Proposition 17. f#@ = @f#:

Proof.

f#@ (�
n) = f#

nX
j=0

(�1)j �nj[v0;v1;:::;v̂j ;:::;vn]

=
nX
j=0

(�1)j (f � �n)j[v0;v1;:::;v̂j ;:::;vn]

= @f# (�
n) :

�

De�nition 18. A map � : Cn (X) ! Cn (Y ) satisfying �@ = @� is called a chain
map.

This gives us a commutative diagram of chain complexes (draw picture). It
follows that if � 2 ker @ : Cn (X)! Cn�1 (X) then

@f# (�) = f#@ (�) = 0
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and so the kernel maps to the kernel, while if � = @
 then

f#� = f#@
 = @f#


and so the image of @ maps to the image of @:
It follows that a chain map induces a map on homology, f� : Hn (X)! Hn (Y )

and similarly for reduced homology.

Proposition 19. A chain map between complexes induces a homomorphism be-
tween homology groups of the complexes.

Proposition 20. The following are true:
(1) (f � g)� = f�g� (where f : X ! Y and g : Y ! Z).
(2) Id� = Id:

Proof. These follow easily from associativity of composition of maps. �
Theorem 21. If two maps f; g : X ! Y are homotopic, then they induce the same
homomorphism f� = g� : Hn (X)! Hn (Y ) :

Corollary 22. Maps f� : Hn (X) ! Hn (Y ) induced by a homotopy equivalence
f : X ! Y are isomorphisms for all n:

The theorem is proven by two propositions:

Proposition 23. A homotopy between f and g induces a chain homotopy P :
Cn (X)! Cn+1 (Y ) :

De�nition 24. A chain homotopy between maps f# and g# is a map P : Cn (X)!
Cn+1 (Y ) satisfying

@P + P@ = g# � f#:
Two maps are chain homotopic if there exists a chain homotopy between them.

Proposition 25. Chain homotopic maps induce the same map on homology.

Proof. If � 2 Cn (X) is a cycle, then g#��f#� = @P�; and so g� [�] = f� [�] : �
The key is constructing the chain homotopy, which is a prism operators P: The

homotopy F : X � I ! Y gives, for each simplex �n : �n ! X a map

F � (� � 1) : �n � I ! Y:

�n � I can be broken up into (n+ 1)-simplices in the following way (see Hatcher
for the details): if we let [v0; : : : ; vn] be the vertices for �n � f0g and [w0; : : : ; wn]
be the vertices for �n � f1g ; we have simplices

�n+1i = [v0; : : : ; vi; wi; : : : : ; wn] :

(Technically, a simplex is a map, so we want � � 1 restricted to this.) We can
construct the prism operator

P : Cn (X)! Cn+1 (Y )

by

P (�n) =
nX
i=0

(�1)i F � �n+1i

=
nX
i=0

(�1)i [F � (� � 1)]j[v0;:::;vi;wi;::::;wn] :
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We can now compute

@P (�) =
X
j�i

(�1)i+j [F � (� � 1)]j[v0;:::;v̂j ;:::vi;wi;::::;wn]

+
X
j�i

(�1)i+j+1 [F � (� � 1)]j[v0;:::;vi;wi;::::ŵj ;:::;wn] :

Notice that in the top term, i = j = a cancels with the bottom term i = j = a� 1;
as long as a 6= 0 and a 6= n: In those cases we get

F � (� � f1g) = g#�

�F � (� � f0g) = �f#�
Also compute

P@ (�) = P
nX
j=1

(�1)j �j[v0;:::;v̂j ;:::;vn]

=
X
i<j

(�1)i+j+1 [F � (� � 1)]j[v0;:::;v̂j ;:::;vi;wi;::::;wn]

+
X
i>j

(�1)i+j [F � (� � 1)]j[v0;:::;vi;wi;:::;ŵj ;::::;wn] :

So we get
@P = �P@ + g#� � f#�:

Thus the map P is a chain homotopy and so we get that g� = f�:

6. Relative homology and the exact sequence of the pair

In studying quotients and other spaces, it will be extremely useful to consider
relative homology.

De�nition 26. Suppose X is a topological space and A is a subspace of X: Let the
relative chains Cn (X;A) be de�ned by

Cn (X;A) = Cn (X) =Cn (A) :

De�ne the boundary maps to be

@n : Cn (X;A)! Cn�1 (X;A)

de�ned by the induced quotient maps.

We should check that the boundary makes sense, i.e., that @n : Cn (X) !
Cn�1 (X) takes Cn (A) to Cn�1 (A) ; but this is true since A is a subspace! Fur-
thermore, it is clear that @2 = 0; so there is a homology theory for this chain
complex.

De�nition 27. The relative homology groups Hn (X;A) are the homology groups
of the relative chains.

Here are some observations:

� Elements of Hn (X;A) are represented by relative cycles: n-chains � 2
Cn (X) such that @� 2 Cn�1 (A) :
� A relative cycle � in Hn (X;A) is trivial if it is a relative boundary: � =
@� + 
 where � 2 Cn+1 (X) and 
 2 Cn (A) :
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For this reason, we can almost think ofHn (X;A) as the homology of the quotient
X=A; though not quite!
The main theorem of this section is that the relative homology groups form an

exact sequence with the homology groups of X and A:

De�nition 28. A sequence of homomorphisms

� � � �! An+1
�n+1�! An

�n+1�! An�1 �! � � �
is exact if ker�n = Im�n�1 for all n:

Note that an exact sequence is a chain complex (since Im� � ker�) that has
trivial homology (since ker� � Im�). Note the following:

� 0 �! A
��! B is exact i¤ � if injective.

� A ��! B �! 0 is exact i¤ � is surjective.
� 0 �! A

��! B �! 0 is exact i¤ � is an isomorphism.

� If 0 �! A
��! B

��! C �! 0 is exact, it is called a short exact sequence,
and � is injective, � is surjective, and ker� = Im�.

The key facts are the following:

Proposition 29. A short exact sequence of chain complexes gives a long exact
sequence of homology.

De�nition 30. A short exact sequence of chain complexes 0 �! An
��! Bn

��!
Cn �! 0 is a collection of chain complexes such that the following diagrams are
commutative for each n:

(6.1)
0 �! An

�n�! Bn
�n�! Cn �! 0

# @ # @ # @
0 �! An�1

�n�1�! Bn�1
�n�1�! Cn�1 �! 0

Proposition 31. There is a short exact sequence of chain complexes:

0 �! Cn (A)
�#�! Cn (X)

q#�! Cn (X;A) �! 0

where � : A ! X is the inclusion map and q : Cn (X) ! Cn (X) =Cn (A) =
Cn (X;A) is the quotient map.

The proof of Proposition 29 is by a method of proof called diagram chasing.

Proof of Proposition 29. The main di¢ culty is de�ning the boundary map @� :
Hn (C)! Hn�1 (A) : This can be done as follows. Let c 2 Cn (C) be a cycle. Since
it is a cycle, we have @c = 0: Since � is surjective, there is a chain b 2 Bn such that
�b = c: By commutativity, we have that

0 = @c = @�b = �@b:

It follows that @b 2 ker� = Im�; and so there is a unique a 2 An�1 such that
�a = @b: Now we need to see that it is a cycle, but that follows since

0 = @�a = �@a;

but since � is injective, we must have @a = 0:
This gives a �map�from Zn (C) to Zn�1 (A) ; but what if we chose a di¤erent b0

such that �b0 = c; and therefore got a0? Then � (b0 � b) = 0; and so b0� b 2 ker� =
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Im�; so there is a00 2 An such that �a00 = b0�b: Note that @b�@b0 = @�a00 = �@a00:
Notice that

� (a� a0) = @b� @b0;
and since � is injective, we have a � a0 = @a00: Thus there is a well-de�ned map
Zn (C)! Hn�1 (A) :
Now consider the image of @c0 2 Zn (C) : Following the map construction, we

have that there is a chain b 2 Bn such that �b = @c0: However, there must also be
b0 2 Bn+1 such that �b0 = c0; and it must satisfy �@b0 = @�b0 = @c0: Thus we can
choose b = @b0: It follows that @b = 0 and so the corresponding a = 0: Thus the
map is well-de�ned Hn (C)! Hn�1 (A) : Note that the map works like this: given
[c] 2 Hn (C) ; there is a b 2 Bn such that �b = c and a 2 An�1 such that �a = @b;
and the map is @� [c] = [a] :
Now we need to prove that the long sequence is exact:

� � � �! Hn+1 (C)
@��! Hn (A)

���! Hn (B)
���! Hn (C)

@��! Hn�1 (A) �! � � �
� Im�� = ker��: suppose [b] 2 Im��; so there exist a 2 Zn (A) such that
�a = b: We know that �b = 0 by exactness of the short exact sequence,
and so �� [b] = 0: The reverse inclusion is similar.

� Im�� = ker @�: If [c] is in the kernel of @�; then there is a b 2 Bn and
a0 2 An such that �b = c and �@a0 = @b: But also @�a0 = @b; and ��a0 = 0
so � (b� �a0) = c and @ (b� �a0) = 0; so b � �a0 is a cycle and [c] =
�� [b� �a0] : Conversely, if [c] = �� [b] ; then @b = 0 and �b = c; so @� [c] = 0
(actually, we have �b = c + @c0; but then there is a b0 such that �b0 = c0

and � (b+ @b0) = c+ @c0 and b+ @b0 is still a cycle).
� Im @� = ker��: If [a] is in the kernel of �� then �a = @b0 for some cycle b0 2
Bn+1: Since @b0 = 0; it follows that @�b0 = �@b0 = 0; and so [a] = @� [�b

0].
Conversely, if [a] = @� [c] ; then �a = @b such that �b = c: It follows that
�� [a] = 0:

�
So the long exact sequence of a pair (X;A) is

� � � �! Hn+1 (X;A)
@��! Hn (A)

���! Hn (X)
q��! Hn (X;A)

@��! Hn�1 (A) �! � � �
Note that the boundary map @� is quite explicit in this case: suppose [�] 2
Hn (X;A) : Then it is represented by a chain � 2 Cn (X) such that @� 2 Cn�1 (A) :
Furthermore, since @2� = 0; in face, [@�] represents a class in Hn�1 (A) ; so the map
really is induced by @:

Proposition 32. There is a long exact sequence of reduced homology groups. Fur-
thermore, ~Hn (X;A) �= Hn (X;A) for all n if A is nonempty.

Proof. We augment the short exact sequence of chain complexes

0! Cn (A)! Cn (X)! Cn (X) =Cn (A)! 0

where n � 0 by
0! Z! Z! 0! 0

in the n = �1 place (where the �rst two boundary maps are "), and the nontriv-
ial map above is the identity. The same construction holds. Note that since we
augment the relative complex with zero, the chain complex for reduced relative
homology is the same as for relative homology. �
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Proposition 33. If two maps f; g : (X;A)! (Y;B) are homotopic through maps
of pairs, then f� = g�:

Proof. Recall the prism operator P : Cn (X) ! Cn+1 (Y ) : If we restrict P to
Cn (A) ; its image will certainly lie inside Cn+1 (B) (since the homotopy is through
maps of pairs) and so there is a map P : Cn (X;A) ! Cn (Y;B) : The map P is
still a chain homotopy, and the result follows. �

There is also a long exact sequence of a triple derived in a similar way. The
triple is A � B � C and the necessary inclusions are (A;B) ! (B;C) : This gives
the long exact sequence

� � � �! Hn+1 (C;B)
@��! Hn (C;A)

���! Hn (B;A)
���! Hn (C;B)

@��! Hn�1 (C;A) �! � � �

arising from the short exact sequence

0 �! Cn (C;A)
��! Cn (B;A)

��! Cn (C;B) �! 0

which is exact because it is

0 �! Cn (C) =Cn (A)
��! Cn (B) =Cn (A)

��! Cn (C) =Cn (B) �! 0:

7. Excision and quotients

We will not prove the excision theorem because it is a bit technical and we don�t
have the time. The proof is not particularly di¢ cult, just technical. The main idea
is the following proposition.
Let U = fUjg be a collection of subspaces of X whose interiors form an open

cover of X; and let CUn (X) be the subgroup of Cn (X) consisting of chains
P
ci�i

such that �i has image contained in some set U 2 U . The boundary map takes
CUn (X) to C

U
n�1 (X) ; and so there are homology groups H

U
n (X) :

Proposition 34. The inclusion � : CUn (X)! Cn (X) is a chain homotopy equiva-
lence, i.e., there is a chain map � : Cn (X)! CUn (X) such that �� and �� are chain
homotopic to the identity. Hence � induces an isomorphism HU

n (X)
�= Hn (X) :

The main idea is that any chain can be broken up into pieces all in one of the
sets in U . This is done by barycentric subdivision of the simplices. We will not
prove this proposition.

Theorem 35 (Excision Theorem). Given subspaces Z � A � X such that the
closure of Z is contained in the interior of A; then the inclusion (X n Z;A n Z)!
(X;A) induces isomorphisms

Hn (X n Z;A n Z)! Hn (X;A)

for all n: Equivalently, for subspaces A;B � X whose interiors cover X; the inclu-
sion (B;A \B)! (X;A) induces isomorphisms on homology.

Proof. We will not prove this, but the idea is that the chain homotopy from Propo-
sition 34 can apply to quotients, and then one can pick out pieces we don�t want
(i.e., chains in Z). �

We can now prove that the relative sequence is true for quotients:
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Theorem 36. If X is a space and A is a nonempty closed subspace that is a
deformation retract of some neighborhood in X; then there is an exact sequence

� � � �! ~Hn (A)
���! ~Hn (X)

j��! ~Hn (X=A)
@��! ~Hn�1 (A)

���! ~Hn�1 (X)
j��! ~Hn�1 (X=A) �! � � �

where � is the inclusion A! X and j is the quotient map X ! X=A:

Proof. We need the long exact sequence of the triple (X;V;A) ; where A is a defor-
mation retract of the neighborhood V:We have the following commutative diagram:

Hn (X;A) �! Hn (X;V )  � Hn (X nA; V nA)
# q� # q� # q�

Hn (X=A;A=A) �! Hn (X=A; V=A)  � Hn (X=A nA=A; V=A nA=A)
We have that the rightmost maps are isomorphisms by excision. The upper left map
is an isomorphism using the long exact sequence of the triple since Hn (V;A) is triv-
ial since A is a deformation retraction of V; and hence Hn (V;A) �= Hn (A;A) �= 0:
Similarly, we get that the lower left map is an isomorphism. Since q is a homeo-
morphism on the complement of A; the rightmost vertical map is an isomorphism.
By the long exact sequence of the pair (with relative homology), it is clear that
Hn (X=A;A=A) �= ~Hn (X=A) since ~Hn (A=A) �= 0: �

Example 2. We can compute the homology groups of spheres Sn by induction on
n: Note that Sn � Dn=@Dn; and @Dn � Sn�1 is the deformation retract of a small
annulus around the boundary, so by the exact sequence we have

� � � �! ~Hn

�
Sm�1

� ���! ~Hn (D
m)

j��! ~Hn (S
m)

@��! ~Hn�1
�
Sm�1

� ���! ~Hn�1 (D
m)

j��! ~Hn�1 (S
m) �! � � �

and since ~Hn (D
m) = 0 for all n; we have that ~Hn (S

m) �= ~Hn�1
�
Sm�1

�
: We know

that
~Hn

�
S0
� �= � Z if n = 0

0 otherwise

�
:

It follows that

~Hn (S
m) �=

�
Z if n = m
0 otherwise

�
:

Proposition 37 (Brouwer Fixed Point Theorem). Dn is not a deformation retrac-
tion of @Dn: Hence every map Dn ! Dn has a �xed point.

Proof. Recall the argument in dimension 2 that if there is a map f : D2 ! D2

without a �xed point, then there is a retraction D2 ! @D2: The same argument
works for Dn: Recall that a retraction satis�es:

r � � = Id@Dn ;

and so the composition

~Hn�1 (@D
n)

���! ~Hn�1 (D
n)

r��! ~Hn�1 (@D
n)

is an isomorphism. But this is impossible since ~Hn�1 (D
n) = 0 and ~Hn�1 (@D

n) �=
Z. �

Theorem 38 (Invariance of Dimension). If U � Rn and V � Rm are nonempty
and homeomorphic open sets, then n = m:

Remark 5. For di¤eomorphic, this followed from inverse function theorem.
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Proof. By excision, we have that Hk (U;U n fx0g) �= Hk (Rn;Rn n fx0g) for a point
x0 2 U: From the long exact sequence of the pair, we have thatHk (Rn;Rn n fx0g) �=
Hk (Rn n fx0g) ; but since Rn n fx0g is homotopy equivalent to Sn�1; we get that
that m = n if U and V are homeomorphic. �

8. Naturality

Theorem 39. The long exact sequence of the pair is natural, i.e., for any map
f : (X;A)! (Y;B) ; the the following diagram is commutative:

� � � �! Hn+1 (X;A)
@��! Hn (A)

���! Hn (X)
q��! Hn (X;A)

@��! Hn�1 (A) �! � � �
# f� # f� # f� # f� # f�

� � � �! Hn+1 (Y;B)
@��! Hn (B)

���! Hn (Y )
q��! Hn (Y;B)

@��! Hn�1 (B) �! � � �

In fact, naturality follows for any long exact sequence arising from a short exact
sequence of chain complexes.

Theorem 40. Given two short exact sequences of chain complexes (6.1) and chain
maps �;  ; � between them,i.e.,

0 �! An
�n�! Bn

�n�! Cn �! 0
# � #  # �

0 �! Dn
�n�! En

"n�! Fn �! 0

is commutative, the following diagram is commutative:

� � � �! Hn+1 (C)
@��! Hn (A)

���! Hn (B)
���! Hn (C)

@��! Hn�1 (A) �! � � �
# �� # �� #  � # �� # ��

� � � �! Hn+1 (F )
@��! Hn (D)

���! Hn (E)
"��! Hn (F )

@��! Hn�1 (D) �! � � �

Proof. Since  � = �� and �� = " ; two of the squares are easily seen to be
commutative (since each is a chain map). For the last square, we check ��@� [c] =
�� [a] = [� (a)] ; where there is a chain b 2 Bn such that �a = @b and �b = c:
Also @��� [c] = [d] where there is a chain e 2 En such that "e = �� [c] = [� (c)]

and �d = @e: The claim is that [d] = [� (a)] :
Note that we have a choice of chains b and e: Suppose we take e =  (b) : Then

"e = " (b) = �� (b) = � (c)

�� (a) =  � (a) =  @b = @ b = @e:

It follows that @� [� (c)] = [� (a)] ; i.e., @��� [c] = ��@� [c] : �

9. Equivalence of simplicial and singular homology

Note that if X is a �-complex, then simplicial chains are singular chains. Thus
there is an inclusion �n (X) ! Cn (X) ; and since boundaries are respected, it
induces a homomorphism on homology.

Theorem 41. The homomorphisms H�
n (X) ! Hn (X) are isomorphisms for all

n and �-complexes X:

Remark 6. This can be done more generally with relative homology, but we will
only prove this.
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Lemma 42 (The Five-Lemma). In a commutative diagram of abelian groups as
follows:

A
i�! B

j�! C
k�! D

`�! E
# � # � # 
 # � # "
A0

i0�! B0
j0�! C 0

k0�! D0 `0�! E0

if the two rows are exact and �; �; �; " are isomorphisms, then so is 
:

Remark 7. In fact, it can be proven that 
 is surjective if � and � are surjective
and " is injective, and that 
 is injective if � and � are injective and � is surjective.

Proof. The proof is a diagram chase. First we show that 
 is surjective. Given
c0 2 C 0; then `0k0c0 = 0; and since � is surjective, there exists d 2 D such that
�d = k0c0: Using commutativity, we have that

0 = `0k0c0 = `0�d = "`d:

Since " is injective, `d = 0: By exactness, there exists c 2 c such that kc = d: We
get that

k0c0 = �d = �kc = k0
c:

Now consider c0 � 
c; which satis�es k0 (c0 � 
c) = 0; and so by exactness there
exists b0 2 B0 such that j0b0 = c0 � 
c: Since � is surjective, there exists b 2 B such
that �b = b0; and we get

c0 � 
c = j0�b = 
jb:

Thus
c0 = 
 (c+ jb)

and 
 is surjective.
Now suppose 
 (c) = 0: Then

0 = k0
c = �kc:

since � is injective, we have that kc = 0: Thus by exactness there exists b 2 B such
that jb = c: Furthermore,

0 = 
c = 
jb = j0�b:

It follows from exactness that there is a0 2 A such that i0a0 = �b: Since � is
surjective, there exists a 2 A such that �a = a0: It follows that

�b = i0a0 = i0�a = �ia:

Since � is injective, it follows that b = ia: Furthermore, it follows that c = jb =
jia = 0: �

Proof of Theorem 41. First note that for anyX and A � X; we have that�n (X;A)
includes into Cn (X;A) ; giving chain maps. Let Xk be the k-skeleton, i.e., the set of
simplices of dimension k or less. Then we have the following commutative diagram
of exact sequences:

H�
n+1

�
Xk; Xk�1� @��! H�

n

�
Xk�1� i��! H�

n

�
Xk
� q��! H�

n

�
Xk; Xk�1� @��! H�

n�1
�
Xk�1�

# # # # #
Hn+1

�
Xk; Xk�1� @��! Hn

�
Xk�1� i��! Hn

�
Xk
� q��! Hn

�
Xk; Xk�1� @��! Hn�1

�
Xk�1�

We will do an induction on k; assuming that second and �fth vertical maps is
are isomorphisms for all n:
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Furthermore, we show that �rst and fourth vertical maps are isomorphisms.
For simplicial, it is clear that �n

�
Xk; Xk�1� = �n

�
Xk
�
=�n

�
Xk�1� is zero if

n 6= k and is free abelian with basis the k-simplices if n = k: It follows that
H�
n

�
Xk; Xk�1� is the same. For simplicial, we see by de�nition of �-complex that

Xk=Xk�1 �
`
��

k
� =
`
� @�

k
�: We can look at the exact sequence of the quotient:

� � � �! ~Hn

 a
�

@�k�

!
���! ~Hn

 a
�

�k�

!
j��! ~Hn

 a
�

�k� =
a
�

@�k�

!
@��! ~Hn�1

 a
�

@�k�

!
�! � � �

All of the groups in the sequence are zero except ~Hn

�`
� @�

k
�

�
when n = k � 1

or 0 and ~Hn

�`
��

k
�

�
when n = 0: It follows that ~Hn

�`
��

k
� =
`
� @�

k
�

�
is a free

abelian group with generators corresponding to the k-simplices. Since the maps
we are interested in take the k-simplices in H�

k

�
Xk; Xk�1� to the k-simplices in

Hk

�
Xk; Xk�1� ; these maps are isomorphisms. The theorem follows from the Five-

Lemma. �

10. Euler characteristic

De�nition 43. The Euler characteristic of a �-complex X is

� (X) =
X
n

(�1)n cn

where cn is the number of cells of dimension n:

Proposition 44. The Euler characteristic can be expressed

� (X) =
X
n

(�1)n �n

where �n = rank (Hn (X)) are the Betti numbers.

Corollary 45. The Euler characteristic is a topological invariant of the space.

Proof. We will leave this as a homework exercise. �

11. Mayer-Vietoris sequence

Theorem 46 (Mayer-Vietoris). Let X be a topological space and A;B be subspaces
such that the union of their interiors is X: Then there is a long exact sequence:

� � � �! Hn (A \B)
i��j��! Hn (A)�Hn (B)

k��`��! Hn (X)
@��! Hn�1 (A \B) �! � � �

where the maps are induced from inclusions

i : A \B ! A

j : A \B ! A

k : A! X

` : B ! X:

There is a similar one for reduced homology.

Example 3. We can use this to compute the reduced homology of spheres again.
where Sn = Dn

1 [Dn
2 and D

n
1 \Dn

2 ' Sn�1: We get

� � � �! ~Hn (D
n
1 \Dn

2 )
i��j��! ~Hn (D

n
1 )� ~Hn (D

n
2 )

k��`��! ~Hn (S
n)

@��! ~Hn�1 ((D
n
1 \Dn

2 )) �! � � �

and since ~Hn (D
n
1 )� ~Hn

�
D2
n

� �= 0 we can perform induction.
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Remark 8. Much like Van Kampen, Mayer-Vietoris can be used to calculate ho-
mology groups of many spaces by decomposing the spaces into constituent parts.

Example 4. We can compute the homology groups of surfaces �g of genus g in-
ductively. Let the induction be the following:

~Hn (�g) �=

8<: Z if n = 2
Z2g if n = 1
0 otherwise

9=;
~Hn

�
�g nD2

� �= � Z2g if n = 1
0 otherwise

�
where D2 is a small disk and g � 1, and that the highest homology is generated by
simplices covering �g: We can calculate the top directly if g = 1 using simplicial
homology. We now consider the following two Mayer-Vietoris sequences:

� � � �! ~H2

�
@D2

� i��j��! ~H2

�
�g nD2

�
� ~H2

�
D2
� k��`��! ~H2 (�g)

@��! ~H1

�
@D2

�
�! � � �

� � � i��j��! ~H1

�
�g nD2

�
� ~H1

�
D2
� k��`��! ~H1 (�g)

@��! ~H0

�
@D2

�
�! � � �

and

� � � �! ~H2

�
@D2

� i��j��! ~H2

�
�g nD2

�
� ~H2

�
�1 nD2

� k��`��! ~H2 (�g+1)
@��! ~H1

�
@D2

�
�! � � �

� � � i��j��! ~H1

�
�g nD2

�
� ~H1

�
�1 nD2

� k��`��! ~H1 (�g+1)
@��! ~H0

�
@D2

�
�! � � �

The �rst we get

� � � �! 0
i��j��! ~H2

�
�g nD2

� k��! ~H2 (�g)
@��! ~H1

�
@D2

�
�! � � �

� � � i��j��! ~H1

�
�g nD2

� k��`��! ~H1 (�g)
@��! 0

We see that the �rst @� is an isomorphism since we know the generator of ~H2 (�g)

and ~H1

�
@D2

� �= ~H1

�
S1
�
: It follows from exactness that the next map is the zero

map, and the result for ~Hn

�
�g nD2

�
follows from the homology ~Hn (�g) : In the

second, we get

0
k��`��! ~H2 (�g+1)

@��! ~H1

�
@D2

� i��j��! ~H1

�
�g nD2

�
� ~H1

�
�1 nD2

� k��`��! ~H1 (�g+1)
@��! 0

Since we know that i� and j� are the zero maps, induction follows.

To prove Mayer-Vietoris, we need only form the appropriate short exact sequence
of chain complexes. The appropriate one is this:

0! Cn (A \B)! Cn (A)� Cn (B)! CfA;Bgn (A [B)! 0;

where we know that the homology of the last chain complex gives the same homol-
ogy as Cn (A [B) : Certainly i# � j# is injective and k# � `# is surjective, so we
need only show that

ker (k# � `#) = Im (i# � j#) :
If � 2 Cn (A) and � 2 Cn (B) such that �� � = 0 in CfA;Bgn (A [B) ; then clearly
� and � have images only in A \ B and those come from the same simplex. The
fact that Im (i# � j#) � ker (k# � `#) is clear. It follows that there is a long exact
sequence.
For reduced Mayer-Vietoris, we see that the last line will be

0! Z! Z� Z! Z! 0;
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and it is clear what the appropriate maps should be.
Note that the boundary maps @� has a natural meaning. Suppose [�] 2 Hn (X) :

Then by subdivision we can represent � = � + � 2 Cn (A) � Cn (B) such that
@� + @� = 0 (since � is a cycle in X). It follows that @� = �@� 2 Cn�1 (A \B) ;
and must be a cycle since @2 = 0; so the map takes [�] to [@�] :
More examples: Compute for Klein bottle, real projective plane.

12. Degree

A map f : Sn ! Sn induces a map f� : Hn (S
n)! Hn (S

n). Since Hn (S
n) � Z,

the map f� is multiplication by an integer. We call that number the degree. The
degree is a homotopy invariant for maps Sn ! Sn: The degree can sometimes be
computed fairly easily, and its de�nition preceded the de�nition of homology.

� deg Id = 1:
� The degree of a re�ection of Sn � Rn+1 is �1:
� Compositions multiply degree: deg f � g = deg f deg g: This follows from
(fg)� = f�g�:

� The antipodal map Sn ! Sn given by x ! �x has degree (�1)n+1 since
it consists of n+ 1 re�ections (each changing the sign of one coordinate).

� A map f : Sn ! Sn that is not surjective must have degree zero. This
is because we can use stereographic projection to turn it into a map ~f :
Sn ! Rn; and this map is homotopic to a constant map. (The precise
argument is this: Let � : Snn fptg ! Rn be stereographic projection and
��1 : Rn ! Sn n fptg be its inverse. Then f is homotopic to a constant
map via the homotopy ft (x) = ��1 (t (� (f (x)))).)

� You can use degree theory to show some maps are not homotopic. For
instance, the maps S1 ! S1 given by z ! zn are not homotopic to each
other, since their degrees are n:

Many topological theorems can be proven using only degrees.

Theorem 47. If n is even, then the only nontrivial group that can act freely (with-
out �xed points) on Sn is Z2:

Proof. Given a group acting on Sn; each element has a degree, and so there is
a map G ! Z� (the multiplicative group of nonzero integers). The degree of a
homeomorphism must be �1; and so the image of the map is Z2: �
Theorem 48. Sn has a continuous, nonzero vector �eld if and only if n is odd.

Proof. Suppose there is a nonzero vector �eld v (x) : We may replace v (x) with
v (x) = jv (x)j and assume it has norm 1: That the vector �eld is tangent is described
by the property v (x) � x = 0; and so we note that for each x; (cos t) v (x) + (sin t)x
describes a circle in Sn: So letting t go between 0 and �; we have a homotopy
between the identity and the antipodal map. Thus the degrees are the same, and
so (�1)n+1 = 1; so n is odd.
The converse follows by considering the vector �eld v (x1; : : : ; x2k) = (�x2; x1; : : : ;�x2k; x2k�1)

on S2k�1: �
Remark 9. When n = 2; this is referred to as the hairy ball theorem.

Remark 10. Degrees can be computed locally, as follows. Suppose y 2 Sn and
f�1 (y) = fx1; : : : ; xkg � Sn (we are assuming the preimage is a �nite number of
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points). Furthermore, let V be an open neighborhood of y and U1; : : : ; Uk be open
neighborhoods of x1; : : : ; xk that map into V: Then we can compute the local degree
deg f jxi as the multiplier in the homomorphism

f� : Hn (U;U n fxig)! Hn (V; V n fyg) :
Then the degree of f is the sum of the local degrees. If Ui are mapped homeomor-
phically to V; then local degrees are all �1; and you get the degree of the map by
summing these local degrees.

13. First homology group

Proposition 49. If X is path connected, the �rst homology group H1 (X) is iso-
morphic to the abelianization of the fundamental group �1 (X) :

Proof. Clearly there is a map �1 (X) ! H1 (X) since every element of �1 (X) is
represented by a cycle. We need to compute the kernel of this map. Certainly the
commutator subgroup is the kernel, since H1 (X) is abelian. One needs to show
that this is all of the kernel and that the map is surjective. We will not prove this,
but it is in the book. �


