Math 534A Homework 8. Due 11/18

1. Let $\operatorname{SL}(n, \mathbb{R})$ be the set of $n \times n$ matrices with determinant equal to 1 . Prove that $\operatorname{SL}(2, \mathbb{R})$ is a manifold of dimension $n^{2}-1$. Hint: you may use the fact that if you have a matrix smooth function $M(t)$ and $\operatorname{det} M(t)>0$ then $\frac{d}{d t} \log \operatorname{det} M(t)=\operatorname{tr}\left(M^{-1} \frac{d M}{d t}\right)$ (why is this true?).
2. *Lee 11-1
3. Lee 11-4.
4. Lee 11-7.

Note: * means that I want someone to look at your answer and attest to it before submitting.

