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1 Introduction

We will try to get as quickly as possible to a point where we can do some
geometric analysis on Riemannian spaces. One should look at Tao�s lecture 0,
though I will not follow it too closely.

2 Basics of tangent bundles and tensor bundles

Recall that for a smooth manifold M; the tangent bundle can be de�ned in
essentially 3 di¤erent ways ((Ui; �i) are coordinates)

� TM =
F
i

(Ui � Rn) = � where for (x; v) 2 Ui � Rn; (y; w) 2 Uj � Rn we

have (x; v) � (y; w) if and only i¤ y = �j�
�1
i (x) and w = d

�
�j�

�1
i

�
x
(v) :

� TpM = fpaths  : (�"; ")!M such that  (0) = pg = � where � � � if
(�i � �)0 (0) = (�i � �)0 (0) for every i such that p 2 Ui: TM =

F
p2M

TpM:

� TpM to be the set of derivations of germs at p; i.e., the set of linear func-
tionals X on the germs at p such that X (fg) = X (f) g (p) + f (p)X (g)
for germs f; g at p: TM =

F
p2M

TpM:

On can de�ne the cotangent bundle by essentially taking the dual of TpM at
each point, which we call T �pM; and taking the disjoint union of these to get the
cotangent bundle T �M: One could also use an analogue of the �rst de�nition,
where the only di¤erence is that instead of using the vector space Rn; one uses
its dual and the equivalence takes into account that the dual space pulls back
rather than pushes forward. Both of these bundles are vector bundles. One can
also take a tensor bundle of two vector bundles by replacing the �ber over a
point by the tensor product of the �bers over the same point, e.g.,

TM 
 T �M =
G
p2M

�
TpM 
 T �pM

�
:
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Note that there are canonical isomorphisms of tensor products of vector spaces,
such as V 
V � is isomorphic to endomorphisms of V: Note the di¤erence between
bilinear forms (V � 
 V �), endomorphisms (V 
 V �), and bivectors (V 
 V ).
It is important to understand that these bundles are global objects, but will

often be considered in coordinates. Given a coordinate x =
�
xi
�
and a point p in

the coordinate patch, there is a basis @
@x1

��
p
; : : : ; @

@xn

��
p
for TpM and dual basis

dx1
��
p
; : : : ; dxnjp for T �pM: The generalization of the �rst de�nition above gives

the idea of how one considers the trivializations of the bundle in a coordinate
patch, and how the patches are linked together. Speci�cally, if x and y give
di¤erent coordinates, for a point on the tensor bundle, one has

T ij���kab���c (x)
@

@xi

 @

@xj

 � � � 
 @

@xk

 dxa 
 dxb 
 � � � 
 dxc

= T ij���kab���c (x (y))

�
@y�

@xi
@y�

@xj
� � � @y

�

@xk
@xa

@y�
@xb

@y�
� � � @x

c

@y

�
@

@y�

 @

@y�

 � � � 
 @

@y�

 dy� 
 dy� 
 � � � 
 dy ;

where technically everything should be at p (but as we shall see, one can consider
this for all points in the neighborhood and this is considered as an equation of
sections). Recall that a section of a bundle � : E ! B is a function f : B ! E
such that � � f is the identity on the base manifold B: A local section may only
be de�ned on an open set in B: On the tangent space, sections are called vector
�elds and on the cotangent space, sections are called forms (or 1-forms). On
a tensor bundle, sections are called tensors. Note that the set of @

@xi form a
basis for the vector �elds in the coordinate x, and dxi form a basis for the local
1-forms in the coordinates. Sections in general are often written as � (E) or as
C1 (E) (if we are considering smooth sections).
Now the equation above makes sense as an equation of tensors (sections of

a tensor bundle). Often, a tensor will be denoted as simply

T ij���kab���c :

Note that if we change coordinates, we have a di¤erent representation T ����������� of
the same tensor. The two are related by

T ����������� = T ij���kab���c (x (y))

�
@y�

@xi
@y�

@xj
� � � @y

�

@xk
@xa

@y�
@xb

@y�
� � � @x

c

@y

�
:

One can also take subsets or quotients of a tensor bundle. In particular,
we may consider the set of symmetric 2-tensors or anti-symmetric tensors (sec-
tions of this bundle are called di¤erential forms). In particular, we have the
Riemannian metric tensor.

De�nition 1 A Riemannian metric g is a two-tensor (i.e., a section of T �M

T �M) which is

� symmetric, i.e., g (X;Y ) = g (Y;X) for all X;Y 2 TpM; and
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� positive de�nite, i.e., g (X;X) � 0 all X 2 TpM and g (X;X) = 0 if and
only if X = 0.

Often, we will denote the metric as gij ; which is shorthand for gijdxidxj ;
where dxidxj = 1

2

�
dxi 
 dxj + dxj 
 dxi

�
: Note that if gij = �ij (the Kronecker

delta) then
�ijdx

idxj =
�
dx1

�2
+ � � � (dxn)2 :

One can invariantly de�ne a trace of an endomorphism (trace of a matrix)
which is independent of the coordinate change, since

nX
a=1

T aa =
X
a

T��
@xa

@y�
@y�

@xa

=
X
a

T�� �
�
�

=
X
�

T�� :

In fact for any complicated tensor, one can take the trace in one up index and
one down index. This is called contraction. Usually, when there is a repeated
index of one up and one down, we do not write the sum. This is called Einstein
summation convention. The above sum would be written

T aa = T�� :

It is understood that this is an equation of functions.
We cannot contract two indices up or two indices down, since this is not

independent of coordinate change (try it!) However, now that we have the
Riemannian metric, we can use it to �lower an index�and then trace, so we get

T abgba = T aa :

In order to raise the index, we need the dual to the Riemannian metric, which
is gab; de�ned such that gabgbc = �ac (so g

ab is the inverse matrix of gab). Then
we can use gab to raise indices and contract if necessary. Occasionally, extended
Einstein convention is used, where all repeated indices are summed with the
understanding that the Riemannian metric is used to raise or lower indices
when necessary, e.g.,

Taa = Tabg
ab:

Since often we will be changing the Riemannian metric, it becomes important
to understand that the metric is there when extended Einstein is used.

3 Connections and covariant derivatives

3.1 What is a connection?

A covariant derivative is a particular way of di¤erentiating vector �elds. Why
do we need a new way to di¤erentiate vector �elds? Here is the idea. Suppose
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we want to give a notion of parallel vectors. In Rn; we know that if we take
vector �elds with constant coe¢ cients, those vectors are parallel at di¤erent
points. That is, the vectors @

@x1

��
(0;0)

+2 @
@x2

��
(0;0)

and @
@x1

��
(1;�1)+2

@
@x2

��
(1;�1)are

parallel. In fact, we could say that the vector �eld @
@x1 + 2

@
@x2 is parallel since

vectors at any two points are parallel. One might say it is because the coe¢ cients
of the vector �eld are constant (not functions of x1 and x2). However, this
notion is not invariant under a change of coordinates. Suppose we consider the

new coordinates
�
y1; y2

�
=
�
x1;
�
x2
�2�

away from x2 = 0 (where it is not a

di¤eomorphism). Then the vector �eld in the new coordinates is

@yi

@x1
@

@yi
+ 2

@yj

@x2
@

@xj
=

@

@y1
+ 4x2

@

@y2
=

@

@y1
+ 4
p
y2

@

@y2
:

The coe¢ cients are not constant, but the vector �eld should still be parallel
(we have only changed coordinates, so it is the same vector �eld)! So we need
a notion of parallel vector �eld that is independent of coordinate changes (or
covariant).
Remember that we want to generalize the notion that a vector �eld has

constant coe¢ cients. Let X = Xi @
@xi be a vector �eld in a coordinate patch.

Roughly speaking, we want to generalize the notion that @Xi

@xj = 0 for all i and
j: The problem occurred because @

@x1

�
@
@x1

�
is di¤erent in di¤erent coordinates.

Thus we need to specify what this is. Certainly, since @
@xi is a basis, we must

get a linear combination of these, so we take

ri
@

@xj
= �kij

@

@xk

for some functions �kij : These symbols are called Christo¤el symbols. To make
sense on a vector �eld, we must have

ri (X) = ri
�
Xj @

@xj

�
=
@Xj

@xi
@

@xj
+Xj�kij

@

@xk

=

�
@Xk

@xi
+Xj�kij

�
@

@xk
:

Notice the Leibniz rule (product rule). One can now de�ne r for any vector
Y = Y i @

@xi by
rYX = rY i @

@xi
X = Y i (riX) :

This action is called the covariant derivative.
One now de�nes �kij in such a way that the covariant derivative transforms

appropriately under change of coordinates. This gives a global object called a
connection. The connection can be de�ned axiomatically as follows.
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De�nition 2 A connection on a vector bundle E ! B is a map

r : � (TB)
 � (E)! � (E)

(X;�)! rX�
satisfying:

� Tensoriality (i.e., C1 (B)-linear) in the �rst component, i.e., rfX+Y � =
frX�+rY � for any function f and vector �elds X;Y

� Derivation in the second component, i.e., rX (f�) = X (f)�+ frX�:

� R-linear in the second component, i.e., rX (a�+  ) = arX (�)+rX ( )
for a 2 R.

We will consider connections primarily on the tangent bundle and tensor
bundles. Note that a connection r on TM induces connections on all tensor
bundles (also denoted r) in the following way:

� For a function f and vector �eld X; we de�ne rXf = Xf

� For vector �elds X;Y and dual form !; we use the product rule to derive

rX (! (Y )) = X (! (Y )) = (rX!) (Y ) + ! (rXY )

and thus
(rX!) (Y ) = X (! (Y ))� ! (rXY ) :

In particular, the Christo¤el symbols for the connection on T �M are the
negative of the Christo¤el symbols of TM; i.e.,

r @

@xi
dxj = ��jikdx

k

where �kij are the Christo¤el symbols for the connection r on TM:

� For a tensor product, one de�nes the connection using the product rule,
e.g.,

rX (Y 
 !) = (rXY )
 ! + Y 
rX!
for vector �elds X;Y and 1-form !:

Remark 3 The Christo¤el symbols are not tensors. Note that if we change
coordinates from x to ~x; we have

r @

@xi

@

@xj
= r� @~xk

@xi
@

@~xk

��@~x`
@xj

@

@~x`

�
=

@~x`

@xi@xj
@

@~x`
+
@~xk

@xi
@~x`

@xj
r @

@~xk

@

@~x`

which means that

�kij = ~�
m
p`

@~xp

@xi
@~x`

@xj
@xk

@~xm
+

@~x`

@xi@xj
@xk

@~x`
:
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One �nal comment. Recall that we motivated the connection by considering
parallel vector �elds. The connection gives us a way of taking a vector at a
point and translating it along a curve so that the induced vector �eld along the
curve is parallel (i.e., r _X = 0 along ). This is called parallel translation.
Parallel vector �elds allow one to rewrite derivatives in coordinates; that is,

if X = Xi @
@xi is parallel, then

@Xi

@xj
= �Xk�ijk:

3.2 Torsion, compatibility with the metric, and Levi-Civita
connection

There is a unique metric associated with the Riemannian metric, called the
Riemannian connection or Levi-Civita connection. It satis�es two properties:

� Torsion-free (also called symmetric)

� Compatible with the metric.

Compatibility with the metric is the easy one to understand. We want the
connection to behave well with respect to di¤erentiating orthogonal vector �elds.
Being compatible with the metric is the same as

rX (g (Y;Z)) = g (rXY; Z) + g (Y;rXZ) :

Note that normally there would be an extra term, (rXg) (Y; Z) ; so compati-
bility with the metric means that this term is zero, i.e., rg = 0; where g is
considered as a 2-tensor.
Torsion free means that the torsion tensor �; given by

� (X;Y ) = rXY �rYX � [X;Y ]

vanishes. (One can check that this is a tensor by verifying that � (fX; Y ) =
� (X; fY ) = f� (X;Y ) for any function f). It is easy to see that in coordinates,
the torsion tensor is given by

�kij = �
k
ij � �kji;

which indicates why torsion-free is also called symmetric.
Tao gives a short motivation for the concept of torsion-free. Consider an

in�nitesimal parallelogram in the plane consisting of a point x; the �ow of x
along a vector �eld V to a point we will call x+ tV; the �ow of X along a vector
�eld W to a point we will call x + tW; and then a fourth point which we will
reach in two ways: (1) go to x+ tV and then �ow along the parallel translation
of W for a distance t and (2) go to x + tW and then �ow along the parallel
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translation of V for a distance t: Note that using method (1), we get that the
point is

(x+ tV + sW )js=0 + t
@

@s

����
s=0

(x+ tV + sW ) +O
�
t3
�

= x+ tV + tW + t2
@

@s

����
s=0

V +O
�
t3
�
= x+ tV + tW � t2V iW j�kji

@

@xk
+O

�
t3
�
:

Note that using method (2), we get instead

x+ tV + tW � t2W iV j�kji
@

@xk
+O

�
t3
�
;

Thus this vector is x+t (V +W ) up toO
�
t3
�
only if �kji = �

k
ij :Doing this around

every in�nitesimal parallelogram gives the equivalence of these two viewpoints.
Here is another:

Proposition 4 A connection is torsion-free if and only if for any point p 2M;
there are coordinates x around p such that �kij (p) = 0:

Proof. Suppose one can always �nd coordinates such that �kij (p) = 0: Then
clearly at that point, �kij = 0: However, since the torsion is a tensor, we can
calculate it in any coordinate, so at each point, we have that the torsion vanishes.
Now suppose the torsion tensor vanishes and let x be a coordinate around p:
Consider the new coordinates

~xi (q) = xi (q)� xi (p) + �ijk (p)
�
xj (q)� xj (p)

� �
xk (q)� xk (p)

�
:

Then notice that

@~xi

@xj
= �ij + �

i
k` (p) �

k
j

�
x` � x` (p)

�
+ �ik` (p)

�
xk � xk (p)

�
�`j

and so
@~xi

@xj
(p) = �ij :

Thus ~x is a coordinate patch in some neighborhood of p: Moreover, we have
that

@2~xi

@xj@xk
= �ijk (p) :

One can now verify that at p;

�kij (p) =
~�mp`

@~xp

@xi
@~x`

@xj
@xk

@~xm
+

@~x`

@xi@xj
@xk

@~x`

= ~�kij (p) + �
k
ij (p) :

The Riemannian connection is the unique connection which is both torsion-
free and compatible with the metric. One can use these two properties to derive
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a formula for it. In coordinates, one �nds that the Riemannian connection has
the following Christo¤el symbols

�kij =
1

2
gk`

�
@

@xi
gj` +

@

@xj
gi` �

@

@x`
gij

�
:

One can easily verify that this connection has the properties expressed. Note
that the gj` in the formula, etc. are not the tensors, but the functions. This
is not a tensor equation since �kij is not a tensor. Also note that it is very
important that this is an expression in coordinates (i.e., that

�
@
@xi ;

@
@xj

�
= 0).

3.3 Higher derivatives of functions and tensors

One of the important reasons for having a connection is it allows us to take
higher derivatives. Note that one can take the derivative of a function without
a connection, and it is de�ned as

df = rf
df (X) = rXf = X (f)

df =
@f

@xi
dxi:

One can also raise the index to get the gradient, which is

grad (f) = rif @

@xi
=

@f

@xj
gij

@

@xi
:

However, to take the next derivative, one needs a connection. The second
derivative, or Hessian, of a function is

Hess (f) = r2f = rdf
r2f = (ridf)
 dxi

=

�
ri
�
@f

@xj
dxj

��

 dxi

=

�
@2f

@xi@xj
dxj � @f

@xj
�jikdx

k

�

 dxi

=

�
@2f

@xi@xj
� @f

@xk
�kij

�
dxj 
 dxi:

Often one will write the Hessian as

r2ijf = rirjf =
@2f

@xi@xj
� �kij

@f

@xk
:

Note that if the connection is symmetric, then the Hessian of a function is
symmetric in the usual sense. The trace of the Hessian, 4f = gijr2ijf; is called
the Laplacian, and we will use it quite a bit.
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We also may use the connection to compute acceleration of a curve. The
velocity of a curve is _; which does not need a connection, but to compute
the acceleration, r _ _; we need the connection (one also sometimes sees the
equivalent notation D _=dt). A curve with zero acceleration is called a geodesic.
Finally, given any tensor T; one can use the connection to form a new tensor

rT; which has an extra down index.

4 Curvature

One can de�ne the curvature of any connection on a bundle E ! B in the
following way

R : � (TM)
 � (TM)
 � (E)! � (E)

R (X;Y )� = rXrY ��rYrX��r[X;Y ]�:

We will consider the curvature of the Riemannian connection on the tangent
bundle. One can easily see that in coordinates, the curvature is a tensor denoted
as

rirj
@

@xk
�rjri

@

@xk
= R`ijk

@

@x`

which gives us that

ri
�
�`jk

@

@x`

�
�rj

�
�`ik

@

@x`

�
=

�
@

@xi
�`jk

�
@

@x`
+ �`jk�

m
i`

@

@xm
�
�

@

@xj
�`ik

�
@

@x`
� �`ik�mj`

@

@xm

=

�
@

@xi
�`jk �

@

@xj
�`ik + �

m
jk�

`
im � �mik�`jm

�
@

@x`

So the curvature tensor is

R`ijk =
@

@xi
�`jk �

@

@xj
�`ik + �

m
jk�

`
im � �mik�`jm:

Often we will lower the index, and consider instead the curvature tensor

Rijk` = Rmijkgm`:

The Riemannian curvature tensor has the following symmetries:

� Rijk` = �Rjik` = �Rij`k = Rk`ij (These imply that R can be viewed as a
self-adjoint (symmetric) operator mapping 2-forms to 2-forms if one raises
the �rst two or last two indices).

� (Algebraic Bianchi) Rijk` +Rjki` +Rkij` = 0:

� (Di¤erential Bianchi) riRjk`m +rjRki`m +rkRij`m:

Remark 5 The tensor Rijk` can also be written as a tensor R (X;Y; Z;W ) ;
which is a function when vector �elds X;Y; Z;W are plugged in. We will
sometimes refer to this tensor as Rm : The tensor R`ijk is usually denoted by
R (X;Y )Z; which is a vector �eld when vector �elds X;Y; Z are plugged in.
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Remark 6 Sometimes, the up index is lowered into the 3rd spot instead of the
4th, This will change the de�nitions of Ricci and sectional curvature below, but
the sectional curvature of the sphere should always be positive and the Ricci
curvature of the sphere should be positive de�nite.

Remark 7 Note that �kij involved �rst derivatives of the metric, so Riemannian
curvature tensor involves �rst and second derivatives of the metric.

From these one can derive all the curvatures we will need:

De�nition 8 The Ricci curvature tensor Rij is de�ned as

Rij = R``ij = R`ijmg
`m:

Note that Rij = Rji by the symmetries of the curvature tensor. Ricci will
sometimes be denoted Rc (g) ; or Rc (X;Y ) :

De�nition 9 The scalar curvature R is the function

R = gijRij

De�nition 10 The sectional curvature of a plane spanned by vectors X and Y
is given by

K (X;Y ) =
R (X;Y; Y;X)

g (X;X) g (Y; Y )� g (X;Y )2
:

Here are some facts about the curvatures:

Proposition 11 1. The sectional curvatures determine the entire curvature
tensor, i.e., if one can calculate all sectional curvatures, then one can
calculate the entire tensor.

2. The sectional curvature K (X;Y ) is the Gaussian curvature of the surface
generated by geodesics in the plane spanned by X;Y:

3. The Ricci curvature can be written as an average of sectional curvature.

4. The scalar curvature can be written as an average of Ricci curvatures.

5. The scalar curvature essentially gives the di¤erence between the volumes
of small metric balls and the volumes of Euclidean balls of the same radius.

6. In 2 dimensions, each curvature determines the others.

7. In 3 dimensions, scalar curvature does not determine Ricci, but Ricci does
determine the curvature tensor.

8. In dimensions larger than 3, Ricci does not determine the curvature tensor;
there is an additional piece called the Weyl tensor.
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With this in mind, we can talk about several di¤erent kinds of nonnegative
curvature.

De�nition 12 Let x be a point on a Riemannian manifold (M; g) : Then x has

1. nonnegative scalar curvature if R (x) � 0;

2. nonnegative Ricci curvature at x if Rc (X;X) = RijX
iXj � 0 for every

vector X 2 TxM ;

3. nonnegative sectional curvature if R (X;Y; Y;X) = g (R (X;Y )Y;X) � 0
for all vectors X;Y 2 TxM ;

4. nonnegative Riemann curvature (or nonnegative curvature operator) if
Rm � 0 as a quadratic form on 
2 (M) ; i.e., if Rijk`!ij!k` � 0 for
all 2-forms ! = !ijdx

i ^ dxj (where the raised indices are done using the
metric g).

It is not too hard to see that 4 implies 3 implies 2 implies 1: Also, in 3
dimensions, 3 and 4 are equivalent. In dimension 4 and higher, these are all
distinct.
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