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1 Introduction

This lecture roughly follows Tao�s Lecture 1. We will talk in general about �ows
or Riemannian metrics and Ricci �ow.
We will consider a �ow of Riemannian metrics to be a one-parameter family

of Riemannian metrics, usually denoted g (t) or gij (t) or gij (x; t) on a �xed
Riemannian manifold M . There are more ingenious ways to de�ne such a �ow
using spacetimes (called generalized Ricci �ows). However, at present I do not
think that they give a signi�cant savings over the more classical idea, since one
still needs to consider singular spacetimes. For more on generalized Ricci �ows,
consult the book by Morgan-Tian.
The family g (t) is a one-parameter family of sections of a vector bundle, and

one can take its derivative as

@

@t
g (t) = lim

dt!0

g (t+ dt)� g (t)
dt

since g (t) and g (t+ dt) are both sections of the same vector bundle, so the
di¤erence makes sense. In fact, we can di¤erentiate any tensor in this way.
Similarly, we can try to solve di¤erential equations of the form

@

@t
gij = _gij

for some prescribed _gij : The evolution of the metric induces an evolution of the
metric on the cotangent bundle, using

@

@t

�
gijgjk

�
=
@

@t
�ij

@

@t
gij = �gik _gk`g`j :

The Riemannian connection is also changing if the metric is changing. Thus
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for a �xed vector �eld X; we have

@

@t
riX =

@

@t

�
@Xj

@xi
@

@xj
+ �kijX

j @

@xk

�
= Xj _�kij

@

@xk
:

We can use the fact that the connection is torsion-free and compatible with the
metric to derive the formula for _�kij :

0 =
@

@t
(rigjk) =

@

@t

�
@

@xi
gjk � �`ijg`k � �`ikgj`

�
= ri _gjk � _�`ijg`k � _�`ikgj`;

and
0 = _�kij � _�kji

so we can solve for _�kij as

ri _gjk = _�`ijg`k + _�`ikgj`

rj _gki = _�`jkg`k + _�`jigk`

rk _gij = _�`kig`j + _�`kjgi`

to get
_�kij =

1

2
gk` (ri _gj` +rj _gi` �r` _gij) : (1)

Remark 1 This mimics the proof of the formula for the Riemannian connection
given that it is torsion-free and compatible with the metric. There are other ways
to derive this formula, for instance by computing in normal coordinates and
using the fact that although �kij is not a tensor,

@
@t�

k
ij comes from the di¤erence

of two connections and is thus a tensor. We will use this method below.

We may now look at the induced formula for evolution of the Riemannian
curvature tensor. Recall that, in coordinates,

R`ijk
@

@x`
= ri

�
�`jk

@

@x`

�
�rj

�
�`ik

@

@x`

�
:

Since we are interested in the derivative of a tensor, @
@tR

`
ijk =

_R`ijk; we can
compute this in any coordinate system we want. Recall that there is a coordinate
system around p such that all Christo¤el symbols vanish at p: Doing this reduces
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the equation to

_R`ijk
@

@x`
=
@

@t

�
ri
�
�`jk

@

@x`

�
�rj

�
�`ik

@

@x`

��
=
@

@t

�
@

@xi
�`jk

@

@x`
� @

@xj
�`ik

@

@x`

�
=

@

@xi
_�`jk

@

@x`
� @

@xj
_�`ik

@

@x`

= ri _�`jk
@

@x`
�rj _�`ik

@

@x`
:

This last piece is tensorial (recall that _�kij is a tensor), and thus only depends
on the point, not the coordinate patch, so we must have that

_R`ijk = ri _�`jk �rj _�`ik:

We can now use the (1) to get

_R`ijk = ri
�
1

2
g`m (rj _gkm +rk _gjm �rm _gjk)

�
�rj

�
1

2
g`m (ri _gkm +rk _gim �rm _gik)

�
=
1

2
g`m(rirj _gkm +rirk _gjm �rirm _gjk �rjri _gkm �rjrk _gim +rjrm _gik)

=
1

2
g`m(rirj _gkm �rjri _gkm +rirk _gjm �rirm _gjk �rjrk _gim +rjrm _gik)

=
1

2
g`m(�Rpijk _gmp �R

p
ijm _gkp +rirk _gjm �rirm _gjk �rjrk _gim +rjrm _gik):

We can take the trace _Rjk = _Riijk to get

_Rjk =
1

2
gim(�Rpijk _gmp �R

p
ijm _gkp +rirk _gjm �rirm _gjk �rjrk _gim +rjrm _gik)

= �1
2
gimRpijk _gmp +

1

2
gpqRjp _gkp �

1

2
gimrirm _gjk �

1

2
gimrjrk _gim

+
1

2
gim(rkri _gjm �Rpikj _gpm �R

p
ikm _gjp +rjrm _gik)

= �gimRpijk _gmp +
1

2
gpqRjp _gkp +

1

2
gpqRkq _gjp �

1

2
gimrirm _gjk

� 1
2
gimrjrk _gim +

1

2
gim(rkri _gjm +rjrm _gik)

= �1
2
4L _gjk �

1

2
gimrjrk _gim +

1

2
gim(rkri _gjm +rjrm _gik)

where

4L _gjk = g
imrirm _gjk + 2gimRpijk _gmp � g

pqRjp _gkp � gpqRkq _gjp

is the Lichnerowitz Laplacian (notice only the �rst term has two derivatives of
_gjk). (Note: I think that T. Tao has an error in this formula with the sign of
the last term of _Rjk:
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Finally, we may take a trace to get

_R = gjk _Rjk � gpj _gpqgqkRjk
= �gpqgjkRjp _gkp � gimrirmgjk _gjk
+ gimgjkrkri _gjm
= � hRc; _gi � 4 trg ( _g) + div div _g

where

(div h)j = g
k`rkh`j

2 Ricci �ow

Note that in the evolution of Ricci curvature, if one considers

_g = �2Rc;

one gets

� 1
2
gimrjrk _gim +

1

2
gim(rkri _gjm +rjrm _gik)

= gimrjrkRim � gimrkriRjm � gimrjrmRik
= rjrkR� gimrjrmRik � gimrkriRjm

Note that the di¤erential Bianchi identity implies

0 = gjmgk` (riRjk`m +rjRki`m +rkRij`m)
= riR� gjmrjRim � gk`rkRij`m

so
riR = 2gjmrjRim

so

�1
2
gimrjrk _gim+

1

2
gim(rkri _gjm+rjrm _gik) = rjrkR�

1

2
rjrkR�

1

2
rkrjR = 0:

Thus under Ricci �ow,
@

@t
Rc = 4LRc :

Furthermore, We see that

@R

@t
= 2 hRc;Rci+ 24R� 2gi`gjkrirjRk`

= �2 hRc;Rci+ 24R� gi`rir`R
= 4R+ 2 jRcj2

The important notion to get right now is that this looks very much like a
heat equation with a reaction term. We will see how to make use of this in the
near future.
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3 Existence/Uniqueness

Note that the Ricci �ow equation,

@

@t
g = �2Rc

is a second order partial di¤erential equation, since the Ricci curvature comes
from second derivatives of the metric. To truly look at existence/uniqueness,
one must write this as an equation in coordinates. We will look at the lineariza-
tion of this operator in order to �nd the principle symbol (which is basically
the coe¢ cients of the linearization of the highest derivatives). Analysis of the
principle symbol will often allow us to determine that a solution exists for a
short time. Here is the meta-theorem for existence of parabolic PDE:
Meta-Theorem (imprecise): A semi-linear PDE of the form

@u

@t
� aij (x; t) @2u

@xi@xj
+ F (x; t; u; @u) = 0:

on a compact manifold has a solution with initial condition u (x; 0) = f (x)

if there exists � > 0 such that aij�i�j � � j�j2 (this condition is called strict
parabolicity) for t close to 0. Similarly, if we allow aij to depend on u (making
the equation quasilinear, the same is true if we look at the linearization (which
is then semilinear).

Remark 2 aij is called the principal symbol of the parabolic di¤erential oper-
ator. If one takes out the @

@t ; the di¤erential operator is said to be elliptic if it
satis�es the inequality.

Remark 3 We can replace @
@xi with ri since the di¤erence has fewer deriva-

tives.

Remark 4 One should be able to prove a coordinate independent version, but
this is not usually done. All theory is based on theory of di¤erential equations
on domains in the plane.

Remark 5 For an arbitrary, nonlinear second order PDE of the form

G
�
x; t; u; @u; @2u

�
= 0;

one can consider the linearization of G with respect to u: This will look roughly
like �

@HijG
@2

@xi@xj
+ @ViG

@

@xi
+ @uG

�
v

where G = G (x; t; u; V;H) and the operator is evaluated at some u (which is
where it has been linearized. Notice this now gives a semilinear PDE. The
principle symbol is @Hij

G�i�j :
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Example 6 Note that the equation

@u

@t
=

@2

(@x1)
2u+

@2

(@x2)
2u = �

ij @2

@xi@xj

is already linear. For an equation like

@u

@t
= u2

@2u

@x2
;

the linearization is
@v

@t
= u2

@2v

@x2
+ 2u

@2u

@x2
v;

thus the principal symbol is u2 which is positive if u > 0:

Now, the Ricci operator is an operator on sections, not just functions, so
how do we make sense of the kind of result given above. We can make a similar
de�nition in terms of the linearization, but now the principle symbol is a map
from sections of the symmetric 2-tensor bundle to itself. What we need is that
for any � 6= 0; the principle symbol is a linear isomorphism.
Recall that the linearization of Rjk is

_Rjk = �
1

2
gimrirm _gjk �

1

2
gimrjrk _gim +

1

2
gim(rkri _gjm +rjrm _gik)

so the principle symbol of �2Rjk is

�̂ [DRc] (�) (h) = gim�i�mhjk + g
im�j�khim � gim(�k�ihjm + �j�khik):

In order to see if this is an isomorphism, we can rotate � so that �1 > 0 and
�2 = � � � = �n = 0 and by scaling we can assume �1 = 1: We can also assume
that at a point gij = �ij : Then we see that

�̂ [DRc] (�) (h)jk = hjk + �
1
j �
1
k (h11 + � � �+ hnn)� (�1khj1 + �1jh1k):

And so the matrix for the symbol gives0BBB@
h22 + � � �+ hnn 0 � � � 0

0
... h��
0

1CCCA
where 2 � �; � � n: We see immediately that there is an n-dimensional kernel
(we can let h1k equal anything we want and if everything else is zero, we are in
the kernel).
Now we will see how to overcome this issue. Rewrite the linearization as

_Rjk = �
1

2
gimrirm _gjk �

1

2
gimrjrk _gim +

1

2
gim(rkri _gjm +rjrm _gik)

= �1
2
gimrirm _gjk +

1

2
rkVj +rjVk
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if
Vj = g

imri _gjm �
1

2
rj
�
gim _gim

�
:

The last term is equal to the Lie derivative LV gjk (where V = V i = gijVj ; often
denoted V #) and so we get that the linearization of �2Rjk is

gimrirm _gjk � LV gjk:

Lie derivatives arise from changing by di¤eomorphisms, i.e., if �t are di¤eomor-
phisms such that

d

dt
�t (x) = X (x)

and �0 is the identity (i.e., �t is the �ow of X), then

d

dt

����
t=0

��t g0 = LXg0:

One can pretty easily see that if we take the vector �eld V as above, we can
look at the �ow �t and ��t g (t) and we will see that ~g (t) = �

�
t g (t) evolves by

@

@t
~g = �2Rc (~g) + LV ~g

and the linearization is
gimrirm _gjk:

This is like looking at an equation roughly like

@

@t
h = gimrirmhjk;

which is a heat equation with a unique solution. This has principal symbol gij ;
which is strictly positive de�nite. It can be shown that this implies that the
modi�ed Ricci �ow (the equation above on ~g) has a unique solution. One can
then show that this implies the Ricci �ow has a unique solution too. I.e.,

Theorem 7 Given an initial closed Riemannian manifold (M; g0) ; there is a
time T > 0 and Riemannian metrics g (t) on M for each t 2 [0; T ) such that
which satisfy the initial value problem

@

@t
g = �2Rc (g)

g (0) = g0:

Moreover, given the initial condition, g (t) are uniquely determined, and there
is a maximal such T:

Remark 8 One can also show that this is true for complete manifolds with
bounded curvature jRmj ; which was done by Shi. However, the proof is much
more di¢ cult on noncompact manifolds.
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