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1 Introduction

This lecture roughly follows Tao’s Lecture 1. We will talk in general about flows
or Riemannian metrics and Ricci flow.

We will consider a flow of Riemannian metrics to be a one-parameter family
of Riemannian metrics, usually denoted g (t) or gi; () or g¢;; (z,t) on a fixed
Riemannian manifold M. There are more ingenious ways to define such a flow
using spacetimes (called generalized Ricci flows). However, at present I do not
think that they give a significant savings over the more classical idea, since one
still needs to consider singular spacetimes. For more on generalized Ricci flows,
consult the book by Morgan-Tian.

The family g () is a one-parameter family of sections of a vector bundle, and
one can take its derivative as
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since ¢ (t) and g (t + dt) are both sections of the same vector bundle, so the

difference makes sense. In fact, we can differentiate any tensor in this way.
Similarly, we can try to solve differential equations of the form
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for some prescribed §;;. The evolution of the metric induces an evolution of the
metric on the cotangent bundle, using
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The Riemannian connection is also changing if the metric is changing. Thus



for a fixed vector field X, we have
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We can use the fact that the connection is torsion-free and compatible with the
metric to derive the formula for Ffj
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so we can solve for Ff’j as

Vigjk = Ffjgék + 14950
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to get

Iy = %gke (Vigje + Vjgie — Vigij) - (1)
Remark 1 This mimics the proof of the formula for the Riemannian connection
given that it is torsion-free and compatible with the metric. There are other ways
to derive this formula, for instance by computing in normal coordinates and
using the fact that although Ffj is not a tensor, %Ffj comes from the difference
of two connections and is thus a tensor. We will use this method below.

We may now look at the induced formula for evolution of the Riemannian
curvature tensor. Recall that, in coordinates,
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Since we are interested in the derivative of a tensor, %Rfjk = Rfjk, we can

compute this in any coordinate system we want. Recall that there is a coordinate
system around p such that all Christoffel symbols vanish at p. Doing this reduces



the equation to
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This last piece is tensorial (recall that f‘fj is a tensor), and thus only depends
on the point, not the coordinate patch, so we must have that

ngk = Vifg'k - ijfk-

We can now use the (1) to get
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We can take the trace Rjk = szk to get
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where
Argir = 9" ViVuir + 29 Ry Gump — 9" Ripdrp — 97 Riqdjp

is the Lichnerowitz Laplacian (notice only the first term has two derivatives of
gjk). (Note: I think that T. Tao has an error in this formula with the sign of
the last term of Rjj.



Finally, we may take a trace to get
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where

(divh); = g Vihy;

2 Ricci flow

Note that in the evolution of Ricci curvature, if one considers

g = —2Re,
one gets
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Thus under Ricci flow,

% Rc = ArRe.
Furthermore, We see that
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The important notion to get right now is that this looks very much like a
heat equation with a reaction term. We will see how to make use of this in the
near future.



3 Existence/Uniqueness

Note that the Ricci flow equation,

% g=—2Rc

is a second order partial differential equation, since the Ricci curvature comes
from second derivatives of the metric. To truly look at existence/uniqueness,
one must write this as an equation in coordinates. We will look at the lineariza-
tion of this operator in order to find the principle symbol (which is basically
the coefficients of the linearization of the highest derivatives). Analysis of the
principle symbol will often allow us to determine that a solution exists for a
short time. Here is the meta-theorem for existence of parabolic PDE:

Meta-Theorem (imprecise): A semi-linear PDE of the form
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on a compact manifold has a solution with initial condition u(x,0) = f(x)
if there exists & > 0 such that a”&;&; > (5|C|2 (this condition is called strict
parabolicity) for t close to 0. Similarly, if we allow a* to depend on u (making
the equation quasilinear, the same is true if we look at the linearization (which
is then semilinear).

Remark 2 a% is called the principal symbol of the parabolic differential oper-
ator. If one takes out the %, the differential operator is said to be elliptic if it
satisfies the inequality.

Remark 3 We can replace % with V; since the difference has fewer deriva-
tives.

Remark 4 One should be able to prove a coordinate independent version, but
this is not usually done. All theory is based on theory of differential equations
on domains in the plane.

Remark 5 For an arbitrary, nonlinear second order PDE of the form
G (x,t, u, Ou, 82u) =0,

one can consider the linearization of G with respect to w. This will look roughly
like
0 Gai2 0 Gi oG
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where G = G (z,t,u,V, H) and the operator is evaluated at some u (which is
where it has been linearized. Notice this now gives a semilinear PDE. The

principle symbol is O, G&;E;.



Example 6 Note that the equation
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s already linear. For an equation like
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thus the principal symbol is u? which is positive if u > 0.

Now, the Ricci operator is an operator on sections, not just functions, so
how do we make sense of the kind of result given above. We can make a similar
definition in terms of the linearization, but now the principle symbol is a map
from sections of the symmetric 2-tensor bundle to itself. What we need is that
for any £ # 0, the principle symbol is a linear isomorphism.

Recall that the linearization of R; is
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so the principle symbol of —2R;;, is
6 [DRe] (§) (h) = gimfifmhjk + gimgjgkhim - gim(fk&hjm + &iékhir)-

In order to see if this is an isomorphism, we can rotate £ so that & > 0 and
& = - =&, = 0 and by scaling we can assume & = 1. We can also assume
that at a point g;; = J;;. Then we see that
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And so the matrix for the symbol gives
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where 2 < «, 8 < n. We see immediately that there is an n-dimensional kernel
(we can let hyj equal anything we want and if everything else is zero, we are in

the kernel).
Now we will see how to overcome this issue. Rewrite the linearization as

R;

59 ViVimgix — 59 ViViGim + 59 (ViVidim + ViV gik)
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The last term is equal to the Lie derivative Ly g;i (where V =V = ¢g¥V;, often
denoted V#) and so we get that the linearization of —2R;y, is

Vi =g"Vidjm —
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Lie derivatives arise from changing by diffeomorphisms, i.e., if ¢; are diffeomor-
phisms such that

d
P& () = X (2)
and ¢q is the identity (i.e., ¢; is the flow of X)), then
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One can pretty easily see that if we take the vector field V' as above, we can
look at the flow ¢; and ¢;¢g (t) and we will see that g (t) = ¢fg (t) evolves by
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and the linearization is
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This is like looking at an equation roughly like
0
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which is a heat equation with a unique solution. This has principal symbol g¥/,
which is strictly positive definite. It can be shown that this implies that the
modified Ricci flow (the equation above on g) has a unique solution. One can
then show that this implies the Ricci flow has a unique solution too. Le.,

Theorem 7 Given an initial closed Riemannian manifold (M, go), there is a
time T > 0 and Riemannian metrics g (t) on M for each t € [0,T) such that
which satisfy the initial value problem

0
ag = —2Rc (9)
9(0) = go-

Moreover, given the initial condition, g (t) are uniquely determined, and there
is a mazximal such T.

Remark 8 One can also show that this is true for complete manifolds with
bounded curvature |Rm|, which was done by Shi. However, the proof is much
more difficult on noncompact manifolds.



