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1 Introduction

This section will roughly follow Tao�s lecture 3. We will look at some basic PDE
techniques and apply them to the Ricci �ow to obtain some important results
about preservation and pinching of curvature quantities. The important fact
is that the curvatures satisfy certain reaction-di¤usion equations which can be
studied with the maximum principle.

2 The maximum principle

Recall that if a smooth function u : U ! R where U � Rn has a local minimum
at x0 in the interior of U; then

@u

@xi
(x0) = 0

@2u

@xi@xj
(x0) � 0

where the second statement is that the Hessian is nonnegative de�nite (has all
nonnegative eigenvalues). The same is true on a Riemannian manifold, replacing
regular derivatives with covariant derivatives.

Lemma 1 Let (M; g) be a Riemannian manifold and u : M ! R be a smooth
(or at least C2) function that has a local minimum at x0 2M: Then

riu (x0) = 0
rirju (x0) � 0

4u (x0) = gij (x0)rirju (x0) � 0:

Proof. In a coordinate patch, the �rst statement is clear since riu = @u
@xi :

The second statement is that the Hessian is positive de�nite. Recall that in
coordinates, the Hessian is

rirju =
@2u

@xi@xj
� �kij

@u

@xk
;
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but at a minimum, the second term is zero and the positive de�niteness follows
from the case in Rn: The last statement is true since both g and the Hessian
are positive de�nite.

Remark 2 There is a similar statement for maxima.

The following lemma is true in the generality of a smooth family of metrics,
though is also of use for a �xed metric.

Lemma 3 Let (M; g (t)) be a smooth family of compact Riemannian manifolds
for t 2 [0; T ]: Let u : [0; T ]�M ! R be a C2 function such that

u (0; x) � 0

for all x 2M: Also let A 2 R. Then exactly one of the following is true:

1. u (t; x) � 0 for all (t; x) 2 [0; T ]�M; or

2. There exists a (t0; x0) 2 (0; T ] such that all of the following are true:

u (t0; x0) < 0

riu (t0; x0) = 0;
4g(t0)u (t0; x0) � 0;

@u

@t
(x0; t0) � 0:

Proof. Certainly both cannot hold. Now suppose 1 fails. Then there must exist
" > 0 and (t0; x0) such that u (t0; x0) < 0: We may move this to the minimum
point, at which all of the �rst three must hold. If we take this to be the �rst
time that such a point occurs, the last must hold as well.

Corollary 4 Let (M; g (t)) be a smooth family of compact Riemannian mani-
folds for t 2 [0; T ]: Let u; v : [0; T ]�M ! R be C2 functions such that

u (0; x) � v (0; x)

for all x 2M: Also let A 2 R. Then exactly one of the following is true:

1. u (t; x) � v (t; x) for all (t; x) 2 [0; T ]�M; or

2. There exists a (t0; x0) 2 (0; T ] such that all of the following are true:

u (t0; x0) < v (t0; x0)

riu (t0; x0) = riv (t0; x0) ;
4g(t0)u (t0; x0) � 4g(t0)v (t0; x0) ;

@u

@t
(x0; t0) �

@v

@t
(t0; x0) +A [u (t0; x0)� v (t0; x0)] :
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Proof. Replace u with e�At (u� v) :
This will allow us to estimate subsolutions of a heat equation by supersolu-

tions of the same heat equation.

Corollary 5 Let the assumptions be the same as in Corollary 4, including

u (0; x) � v (0; x) :

Suppose u is a supersolution of a reaction-di¤usion equation, i.e.,

@u

@t
� 4g(t)u+rX(t)u+ F (t; u)

and v is a subsolution of the same equation, i.e.,

@v

@t
� 4g(t)u+rX(t)v + F (t; v)

for all (t; x) 2 [0; T ]�M; where X (t) is a vector �eld for each t and F (t; w) is
Lipschitz in w; i.e., there is A > 0 such that

jF (t; w)� F (t; w0)j � A jw � w0j :

Then
u (t; x) � v (t; x)

for all t 2 [0; T ] :

Proof. Consider
@

@t
(u� v) � 4g(t) (u� v) +rX(t) (u� v) + F (t; u)� F (t; v)

� 4g(t) (u� v) +rX(t) (u� v)�A ju� vj :

The dichotomy in Corollary 4 says that either u� v � 0 for all t; x or else there
is a point (t0; x0) such that at that point,

u� v < 0
4 (u� v) = 0
r (u� v) = 0
@

@t
(u� v) � A0 (u� v) = �A0 ju� vj

for any A0: But the inequality above says that at that same point

@

@t
(u� v) � �A ju� vj ;

which is a contradiction if �A0 < �A:
Usually, instead of making v a subsolution, we will just make v the subsolu-

tion to the ODE
dv

dt
� F (t; v) ;

where v = v (t) is independent of x and so this is also a subsolution to the PDE.
Here is an easy application:
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Proposition 6 Nonnegative scalar curvature is preserved by the Ricci �ow,
i.e., if R (0; x) � 0 for all x 2 M and the metric g satis�es the Ricci �ow for
t 2 [0; T ), then R (t; x) � 0 for all x 2M and t 2 [0; T ].

Proof. Recall that R satis�es the evolution equation

@R

@t
= 4g(t)R+ 2 jRcj2 ;

thus it is a supersolution to the heat equation (with changing metric), i.e.,

@R

@t
� 4R:

By Corollary 5, we must have that R � 0 for all t:
We can actually do better. Notice that if Tij is a 2-tensor on an n-dimensional

Riemannian manifold (M; g), then

jT j2 � 1

n

�
gijTij

�2
since ����Tij � 1

n

�
gk`Tk`

�
gij

����2 � 0
(expand that out and see it implies the previous inequality). Thus

jRcj2 � 1

n
R2

and so scalar curvature satis�es

@R

@t
� 4R+ 2

n
R2:

The maximum principle implies that R (t; x) � f (t) for all x 2 M; where f (t)
is the solution to the ODE

df

dt
=
2

n
f2

f (0) = min
x2M

R (x; 0) :

This equation can be solved explicitly asZ
1

f2
df =

Z
2

n
dt

� 1
f
=
2

n
t� 1

f (0)

f (t) =
f (0)

1� 2
nf (0) t

as long as f (0) 6= 0: Notice that if f (0) > 0 then this says that R (t; x) goes
to in�nity in �nite time T � n

2f(0) : If f (0) < 0; then this says that if the �ow
exists for all time, then the scalar curvature becomes nonnegative in the limit.

4



3 Maximum principle on tensors

Sometimes it may be useful to use a tensor variant, for a function u : [0; T ] !
� (V ) where � (V ) are sections of a tensor bundle (such as if we wish to apply
the maximum principle to the Ricci tensor, for instance). Here is the theorem
(possibly due to Hamilton?)

Lemma 7 Let (M; g) be a d-dimensional Riemannian manifold and let V be a
vector bundle over M with connection r: Let K be a closed, �berwise convex
subset of V which is parallel with respect to the connection. Let u 2 � (V ) be a
section such that

1. u (x) 2 @Kx at some point x 2M; and

2. u (y) 2 Ky for all y in a neighborhood of x

(This is the notion that u attains a maximum at x:) Then rXu (x) is tangent
to Kx at u (x) and the Laplacian 4u (x) = gij (x)rirju (x) is an inward or
tangential pointing vector to Kx at u (x) :

Here are the relevant de�nitions.

De�nition 8 A subset K of a tensor bundle � : E ! M is �berwise convex if
the �ber Kx = K \ Ex (where Ex = ��1 (x)) is a convex subset of the vector
space Ex:

De�nition 9 A subset K is parallel to the connection r if it is preserved by
parallel translation, i.e., if Px;y is parallel translation along a curve from x to
y; then P �x;yKy � Kx (this is if the tensors are all contravariant).

Example 10 The set of positive de�nite two-tensors is �berwise convex and
parallel with respect to the Levi-Civita connection.

The maximum principle on tensors can be used to show things like:

1. Nonnegative Ricci curvature is preserved by Ricci �ow in dimension 3.

2. Nonnegative curvature operator is preserved by Ricci �ow in all dimen-
sions.

We will go into this in more detail in future lectures.
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