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1 Gradient �ow

Formulating an equation as a gradient �ow has many advantages. Consider the
heat equation

@f

@t
= 4f

on a compact Riemannian manifold. It is easy to see that if one considers the
energy

E (f) =
1

2

Z
M

jrf jg dV;

that if we take the time derivative of the energy when f satis�es the heat
equation, we get

dE

dt
(f) =

Z
M

rf � r
�
@

@t
f

�
dV

= �
Z
M

4f
�
@

@t
f

�
dV

= �
Z
M

(4f)2 dV � 0:

Thus we immediately get that the energy is decreasing and that stationary points
are harmonic functions, i.e., functions which satisfy 4f = 0: This monotonicity
also tells us that f cannot have periodic solutions which are not �xed points,
for if f (t1; x) = f (t2; x) for all x; then E (f (t1; �)) = E (f (t2; �)), and the
monotonicity implies that 4f = 0 for t 2 [t1; t2]:
The monotonicity is true in general for a gradient �ow. If one has an energy

E (f) ; one de�ned the gradient �ow as

@f

@t
= �grad (E) ;

where the gradient vector grad (E) is given so that

dE (X) = g (X; grad (E)) ;
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for some metric g on the space of functions. In our case that g is the L2 metric
(which uses the Riemannian metric g on M).
It would be nice to represent Ricci �ow in this way. It is not at all trivial to

do this.

2 Ricci �ow as a gradient �ow

An obvious choice of functional is the Einstein-Hilbert functional:

EH (g) =

Z
M

RdV:

To calculate its variation, recall that if we have a variation of the metric (�g)ij =
hij ; then we get

�R (h) = � hRc; hi � 4 trg (h) + div div h:

It is not hard to see that since

� log det g = gijhij

so

�
p
det g = � exp

�
1

2
log det g

�
=
1

2
(trg h)

p
det g

so
� (dV ) =

1

2
(trg h) dV:

Using the above formula we get

� (EH) (h) =

Z
M

�
� hRc; hi � 4 trg (h) + div div h+

1

2
R (trg h)

�
dV

=

Z
M

�
� hRc; hi+ 1

2
R (trg h)

�
dV

=

Z
M

�
1

2
Rg � Rc; h

�
dV:

Remark 1 Here we used the divergence theorem for a compact Riemannian
manifold, which says thatZ

hdiv T; Si dV = �
Z
hT;rSi dV;

for any n-tensor T and (n� 1)-tensor S: More explicitly,Z
gi1j1 � � � ginjngji0rjTi0i1���inSj1j2���jndV =

Z
gi1j1 � � � ginjngji0Ti0i1���inrjSj1j2���jndV:

2



So critical points of the Einstein-Hilbert functional satisfy the Einstein equa-
tion. The gradient �ow would be

@

@t
g = �2

�
Rc�1

2
Rg

�
:

The problem is that this �ow is not parabolic and there is no existence theory
for such equations.
Let�s try a new tactic. Replace dV by a �xed measure dm: Then the func-

tional

H (g) =

Z
M

Rdm

satis�es the variation

�H (h) =

Z
M

(�hRc; hi � 4 trg (h) + div div h) dm:

You don�t lose the last two terms with the divergence theorem, since that only
works with the volume measure. However, we can consider the Radon-Nikodym
derivative and write

dm =
dm

dV
dV

for a positive function dm
dV : We can write

dm

dV
= e�f :

Then,

�H (h) =

Z
M

(�hRc; hi � 4 trg (h) + div div h) e�fdV

can be integrated by parts to get

�H (h) =

Z
M

(�hRc; hi � hr trg (h) ;rfi+ div h � rf) e�fdV

=

Z
M

�
�hRc; hi+ trg (h)4f � trg (h) jrf j2 �



h;r2f

�
+ h (rf;rf)

�
e�fdV

=

Z
M

D
�Rc�r2f +

�
4f � jrf j2

�
g +rfrf; h

E
e�fdV:

Remark 2 Tao often uses h�; �i to denote the Euclidean metric locally, and
so explicitly puts in gij�s in this case. We will understand that h�; �i requires
the metric, and so when quantities like this are di¤erentiated, we also need to
di¤erentiate the metric, as we will see below.

We need to add another term, and so we get

F (g) =

Z
M

�
R+ jrf j2

�
e�fdV =

Z
M

 
R+

����r log dmdV
����2
!
dm:
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We now need that

0 = � (dm) = �
�
e�fdV

�
= � (�f) e�fdV + 1

2
trg he

�fdV

=

�
��f + 1

2
trg h

�
e�fdV

Thus we have that
�f =

1

2
trg h

Let

E (g) =

Z �
gijrifrjf

�
e�fdV

where dm = e�fdV is �xed (so that f = � log dm=dV and �f is expressed as
above). We can then compute

�E (h) = �

�Z �
gijrifrjf

�
e�fdV

�
=

Z �
�hh;rfrfi+ 2 hrf;r (�f)i � jrf j2 �f + 1

2
jrf j2 trg h

�
e�fdV

=

Z �
�hh;rfrfi � 24f (�f) + jrf j2 �f + 1

2
jrf j2 trg h

�
e�fdV

=

Z �D
h;�rfrf � (4f) g + jrf j2 g

E�
e�fdV:

Now, since F = H + E; we have

�F (h) =

Z
M



�Rc�r2f; h

�
e�fdV:

Thus the gradient �ow of �2F is

@g

@t
= �2Rc (g)� 2r2f:

This is almost Ricci �ow, but not quite. The f is changing, too, by the equation

@f

@t
= �4f �R:

This is a backward heat equation, which it turns out will make it useful to probe
backwards.
Notice that

2r2f = Lrfg;
the Lie derivative of g in the direction rf: This means that the �ow above
di¤ers from Ricci �ow by a di¤eomorphism. Instead, we can consider �g = ��g;
where � is the �ow of di¤eomorphisms generated by rf; and we will see that �g
evolves by Ricci �ow. Furthermore, f will di¤er by a Lie derivative, and

Lrff = df (rf) = jrf j2
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(where is the metric in here? It is in rf; which is a vector �eld gotten by raising
the index on df) and so under the new �ow, �f = f � � evolves by

@ �f

@t
= �4�g

�f � �R+
��r �f ��2

�g
:

Example 3 (Fundamental, important example) Let (M; g) be Euclidean
space M = Rd and let

f (t; x) =
jxj2

4�
+
d

2
log 4�� = � log

h
(4��)

�d=2
e�jxj

2=(4�)
i

where � = t0 � t; Notice that e�fdx is the Gaussian measure, which solves
the backward heat equation (the fundamental solution to the heat equation). If
t < t0; this choice of g and f satisfy the equations

@g

@t
= �2Rc (g) (1)

@f

@t
= �4f �R+ jrf j2 : (2)

We can check:

@f

@t
=

@

@t

"
jxj2

4�
+
d

2
log 4��

#

=
jxj2

4�2
� d

2�
:

rf = x

2�

jrf j2 = jxj2

4�2

4f = d

2�

so it works.

Notice that when we pull back by �; the measure ��dm is not static. Thus
it makes sense to rewrite the functional as

F (M; g; f) =

Z
M

�
R+ jrf j2

�
e�fdV:

Notice that this functional is invariant under di¤eomorphism, i.e.,

F (M;��g; f � �) = F (M; g; �)

for any di¤eomorphisms �: We also have that under the coupled �ows (1) and
(2),

@F

@t
(M; g; f) = 2

Z ��Rc+r2f ��2 e�fdV:
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Thus we have that F is monotone increasing under Ricci �ow. Unfortunately,
now we have to explicitly deal with this quantity f: To eliminate this, we take
the in�mum:

� (M; g) = inf

�
F (M; g; f) :

Z
M

e�fdV = 1

�
(the in�mum is over f). Using the following exercise, we can show that � is
�nite.

Exercise 4 Show that � (M; g) is the smallest number for which one has the
inequality Z

M

�
4 jruj2g +Ru

2
�
dV � �

Z
M

u2dV;

where u is in H1 (M) =W 1;2 (M), the Sobolev space of functions with 1 deriva-

tive in L2 (so it has norm kfkH1 =
R �
jrf j2g + f2

�
dV for C1 functions). Hint:

show that we can assume u is positive and then write u = e�f=2: Thus � is the
smallest eigenvalue of the operator �44gu+R:

Using the exercise, one sees that the fact that every compact manifold sat-
is�es a Poincaré inequality,Z

M

jruj2 dV � c (d)

Z
M

u2dV;

implies that � is bounded below, basically, by the best constant in the Poincaré
inequality plus minR: Note that the Poincaré inequality constant depends on
the dimension. We will see later a similar inequality for which the constant does
not depend on dimension.
Furthermore, one can prove that � is realized by a positive function u =

e�f=2 with kukL2(M) = 1: Note that H1 (M) embeds compactly into L2 (M)
since M is compact. Thus if we take a minimizing sequence fung in H1; there
is a subsequence (which we also denote by fung which converges in L2 to a
function u: Now consider:Z �

jrunj2 +Ru2n
�
dV +

Z �
jrumj2 +Ru2m

�
dV

=
1

2

Z �
jr (un � um)j2 +R (un � um)2

�
dV +

1

2

Z �
jr (un + um)j2 +R (un + um)2

�
dV

so

1

2

Z �
jr (un � um)j2 +R (un � um)2

�
dV =

Z �
jrunj2 +Ru2n

�
dV +

Z �
jrumj2 +Ru2m

�
dV

� 1
2

Z �
jr (un + um)j2 +R (un + um)2

�
dV:
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The right side goes to zero in the limit since the terms go to �; � and �2�: Also,
we know that

�min jRj kun � umkL2 �
Z
R (un � um)2 dV � min jRj kun � umkL2

and each term goes to zero. Thus we know that the sequence fung is Cauchy
in H1 and since H1 is complete, it must converge to a function in H1:
Since � is attained at a function, we can sometimes prove inequalities like

the following (taken from the notes of Kleiner and Lott):
Let h (s; t; x) be a two-parameter family of functions such that

h (s; t0) = f� (t0 + s)

@h

@t
= �4h+�R+ jrhj2 :

There is a solution to this for t � t0 since the equation is backwards elliptic.
(Note: we have only shown that f� is in H1; so we mean a weak solution to
the parabolic equation. We could also show that f�; as a minimizer, satis�es a
particular elliptic equation, which implies that f� is smooth by elliptic regularity
theory.)

� (t0) � F (M; g (t0) ; h (s; t0 � s))

= F (M; g (t0 + s) ; h (s; t0))� 2
Z s

0

�Z
M

��Rc (g (t0 + �)) +r2h (s; t0 + �)��2 e�h(s;t0+�)dV � d�:
We then have

� (t0) � � (t0 + s)�2
Z s

0

�Z
M

��Rc (g (t0 + �)) +r2h (s; t0 + �)��2 e�h(s;t0+�)dV � d�
and so

@�

@t
(t0) = lim

s!0+

� (t0 + s)� � (t0)
s

� lim
s!0+

2

s

Z s

0

�Z
M

��Rc (g (t0 + �)) +r2h (s; t0 + �)��2 e�h(s;t0+�)dV � d�
= 2

Z
M

��Rc (g (t0)) +r2h (0; t0)��2 e�h(0;t0)dV
= 2

Z
M

��Rc (g (t0)) +r2f� (t0)��2 e�f�dV
We can now derive
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@�

@t
� 2

Z ��Rc+r2f���2 e�f�dV
� 2

3

Z
(R+4f�)2 e�f�dV

� 2

3

�Z
(R+4f�) e�f�dV

�2
=
2

3

�Z �
R+ jrf�j2

�
e�f�dV

�2
=
2

3
�2:

3 Perelman entropy

We now wish to make our functional scale invariant (so that we get a critical
quantity, not just subcritical). In particular, we know that

dFm
dt

(M; g) = 2

Z ��Rc+r2f ��2 e�fdV
is �xed (under the gradient �ow) if

Rc = �r2f;

i.e., if (M; g) is a gradient Ricci soliton. We wish to have a new functional which
is �xed if (M; g) is a gradient shrinking soliton, i.e.,

Rc = �r2f + 1

2�
g

for some � > 0: A round sphere is a gradient shrinking soliton, so it makes sense
that we would want something like this. Under the Ricci �ow, this structure is
preserved except that � decreases at a constant rate.
First note that if we consider the Nash entropy

Nm (M; g) =

Z
M

dm

dV
log

dm

dV
dV =

Z
M

�
log

dm

dV

�
dm = �

Z
fdm

then

dNm
dt

= �
Z
M

(�4f �R) dm

=

Z
M

�
R+ jrf j2

�
dm = Fm (M; g) :

This will come in handy. Now, suppose we want a quantity W (M; g) such that

dW

dt
=

Z
M

����Rc+r2f � 1

2�
g

����2 dm:
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But in this case, would not have scale invariance forW; since t scales like distance
squared, so the integrand should scale like distance squared. We will �x this by
assuming

d�

dt
= �1

and trying for
dW

dt
= 2�

Z
M

����Rc+r2f � 1

2�
g

����2 dm: (3)

Now, to �nd such a quantity, consider����Rc+r2f � 1

2�
g

����2 = ��Rc+r2f ��2 � 1

�
(R+4f) + d

4�2
:

Thus we have that

2�

Z
M

����Rc+r2f � 1

2�
g

����2 dm = �
dFm
dt

� 2Fm +
d

2�

=
d

dt

�
�Fm �Nm �

d

2
log �

�
:

This is what our Wm would be. However, as we did last time, we wanted to
reparametrize so that

dm = e�fdV

where dV is evolving according to Ricci �ow evolution. This time, we will change

~f = f � d

2
log (4��)

so that
dm = e�fdV = (4��)

�d=2
e�

~fdV:

Remark 5 This looks like the heat kernel for Euclidean space, which is why
this particular normalization is given.

Note that the preservation of dm implies that

d

2�
� @ ~f

@t
+
1

2
trh = 0:

Under the gradient �ow
@g

@t
= �2Rc�2r2f;

we have
@ ~f

@t
=

d

2�
�R�4f:

9



Thus we get for

Wm (M; g; �) = �Fm �Nm �
d

2
log �

=

Z �
�

�
R+

���r ~f ���2�+ ~f � d

2
log (4�)

�
(4��)

�d=2
e�

~fdV

Actually, we usually renormalize this to vanish in the Euclidean case, and so we
can change the d term appropriately to

Wm (M; g; �) =

Z �
�

�
R+

���r ~f ���2�+ ~f � d
�
(4��)

�d=2
e�

~fdV:

We can also de�ne the Perelman entropy as the functional

W (M; g; f; �) =

Z h
�
�
R+ jrf j2

�
+ f � d

i
(4��)

�d=2
e�fdV

where g is a Riemannian metric, f is a function on M , and � is a positive
constant.
If g satis�es the Ricci �ow, then we need to pull back f to get the three

evolutions

@g

@t
= �2Rc (4)

@f

@t
=

d

2�
�R�4f + jrf j2 (5)

d�

dt
= �1:

Under these three, the Perelman Entropy satis�es

dW

dt
(M; g; f; �) = 2�

Z
M

����Rc+r2f � 1

2�
g

����2 (4��)�d=2 e�fdV:
We would like to �nd a minimum over all functions f and constants � so

that we have an invariant of the Riemannian manifold. However, it is not yet
clear that such an in�mum exists. Recall that last time, the existence followed
from a Poincaré inequality. In this scale invariant setting, the existence of a
minimizer will follow from a log-Sobolev inequality.

4 Log-Sobolev inequalities

Let�s �rst consider what happens if g is the Euclidean metric. We would like to
switch to a function which looks like the heat kernel, namely,

u = (4��)
�d=2

e�f :
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Recall that our model case is when f = jxj2 = (4�) ; in which case this is precisely
the backwards heat kernel. The backwards heat kernel satis�es:

@u

@t
= �4u

for � > 0 and
lim
�!0�

u (�; x) = �0 (x) ;

weakly, where �0 is the delta function. Furthermore, one can check thatZ
Rd
udx =

Z
Rd
(4��)

�d=2
e�jxj

2=(4�)dx = 1 (6)

for any �: The backwards heat kernel can be used to solve the heat equation
with some given �nal conditions, e.g., to solve

du

dt
= �4u

u (T; x) = f (x) ;

we see that the convolution

u (t; x) =

Z
Rd
f (y) (4��)

�d=2
e�jx�yj

2=(4�)dy

is a solution.

Exercise 6 Show that all of this is true. Hint: to show (6), turn the integral
into polar coordinates and assume the dimension is at least 2: For the dimension
1 case, there is a trick involving turning it into a dimension 2 integral and
separating.

We can check that for g Euclidean and f as above, we have

W (M; g; f; �) =

Z " jxj2
2�

� d
#
(4��)

�d=2
e�jxj

2=(4�)dx:

One can show that this is zero since

W (M; g; f; �) =

Z h
2�
�
jrf j2 �4f

�i
(4��)

�d=2
e�fdx;

and integrating by parts (needs to be justi�ed) shows this is equal to zero.
Now we re-write W by replacing f with u: We see that (remembering still

we are in Euclidean space),

W =

Z "
�
jruj2

u2
� u log u

#
dx� d

2
log (4��)� d

11



using identities such as

u = (4��)
�d=2

e�f :

log u = �d
2
log (4��)� f

jruj2 = (4��)�d jrf j2 e�2f

jrf j2 = jruj2

u2
:

Tao shows that one can show that W � 0; which implies a log-Sobolev
inequality

�

Z jruj2

u2
dx �

Z
u log udx+

d

2
log (4��) + d;

or as it is usually stated, with �2 = u;

4�

Z
jr�j2 dx � 1

�

Z
�2 log �2dx+

d

2
log (4��) + d:

For the general case, we have

W (M; g; f; �) =

Z "
�

 
Ru+

jruj2

u2

!
� u log u

#
dV � d

2
log (4��)� d

One can show that the

W (M; g; f; �) � �C (M; g; �) :

This implies essentially a log-Sobolev inequality, i.e.,

�

Z
R�2dV + �

Z
4 jr�j2 dV � �C +

Z
�2 log �2dV +

d

2
log (4��) + d:

In fact, we can take the

� (M; g; �) = inf

�
W (M; g; f; �) :

Z
(4��)

�d=2
e�fdV = 1

�
;

which is the best possible constant �C: It can be shown that � is �nite, which
is what we could call a log-Sobolev inequality.
We can now show that if g (t) is a solution to Ricci �ow on t 2 [0; T0] and

� = T0 � t, then � (M; g; �) is increasing. The �rst exercise is important:

Exercise 7 Show that � (M; g; �) =W (M; g; f�; �) for a function f� 2 H1 (M) :
(Not quite true... What is the true statement? Hint: you need to change to a
new function �:)
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Once we know that � is realized by a function, we can show that � (M; g (t) ; � (t))
is increasing as follows. Calculate � (M; g (t0) ; � (t0)) =W (M; g (t0) ; f� (t0) ; � (t0))
for some minimizer f� (t0) : For any time t � t0; we can solve the equation for
f in 4 backwards to t with initial condition f (t0; x) = f� (t0; x) (since f� is in
H1 (M) ; there exists a weak solution to this parabolic �ow). We know that

� (M; g (t) ; � (t)) �W (M; g (t) ; f (t) ; � (t))

�W (M; g (t0) ; f� (t0) ; � (t0)) = � (M; g (t0) ; � (t0)) :

5 Noncollapsing

We will now show that log-Sobolev inequalities imply noncollapsing. Suppose
we have a ball B (p;

p
�) with bounded normalized curvature, i.e.,

jRm(x)j � 1

�

for x 2 B (p;
p
�) : Then jRj � � c (d) for some constant depending only on

dimension. Then the log-Sobolev inequality can be rewritten as

c (d)

Z
�2dV + �

Z
4 jr�j2 dV � � (M; g; �) +

Z
�2 log �2dV +

d

2
log (4��) + d:

Suppose � is a function supported on B (p;
p
�) such that

R
M
�2dV = 1: Then

Jensen�s inequality implies that

1

V (B)

Z
B

�2 log �2dV �
�

1

V (B)

Z
B

�2dV

�
log

�
1

V (B)

Z
B

�2dV

�
=

1

V (B)
log

1

V (B)
;

where B = B (p;
p
�) : (Recall that Jensen�s inequality requires a probability

measure.) So Z
M

�2 log �2dV � log 1

V (B)
:

We now get, for this particular choice of �;

4�

Z
jr�j2 dV � � (M; g; �) + log

�d=2

V (B)
� c0 (d) :

Now we will specialize � even more. Suppose

� (x) = c 

�
d (x; p)p

�

�
for some bump function  on the real line which is 1 on [0; 1=2] and supported on
[0; 1] (technically, we only need half the bump function, which is how I described
it). Thus � (x) = c on B (p;

p
�=2) and c is such thatZ

B

�2dV = 1;
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so c � V (B (p;
p
�=2))

�1=2
: We can choose � so that jr�j � c00c=

p
� on the

ball (for some constant c00), and so

4c00
V (B)

V
�
B1=2

� � � (M; g; �) + log
�d=2

V (B)
� c0 (d) :

Finally, we can use a Bishop-Gromov volume comparison theorem:

Theorem 8 (Bishop-Gromov comparison) If
�
Md; g

�
is a complete Rie-

mannian manifold with
Rc � (n� 1)Kg

for some K 2 R; then for any p 2M ; the volume ratio

V (B (p; r))

VK (B (pK ; r))

is non-increasing as a function of r; where pK is a point in the d-dimensional
simply connected space of constant sectional curvature K; and VK (B (pK ; r)) is
the volume of a ball of radius r in that space.

In particular, we have that

V (B)

V�1=�
�
B
�
p�1=� ;

p
�
�� � V

�
B1=2

�
V�1=�

�
B
�
p�1=� ;

p
�=2
�� ;

and thus there is a � = � (�; d) such that

V (B)

V
�
B1=2

� � �:

In fact, � is independent of � since

V�1=�
�
B
�
p�1=� ;

p
�
��
= V�1 (B (p�1; 1))

V�1=�
�
B
�
p�1=� ;

p
�=2
��
= V�1 (B (p�1; 1=2)) :

Thus there is a constant c000 which depends on d such that

c000 � � (M; g; �) � log �d=2

V (B)
;

i.e.,

V (B) �
�
e��c

000
�
�d=2;

which implies �-noncollapsing at a scale
p
� for � = exp (�� c000) : Let�s formu-

late this into a proposition:

Proposition 9 There is a constant c = c (d) depending only on dimension such
that if �

�
Md; g; �

�
is �nite, then for � = exp (� (M; g; �)� c) ; the Riemannian

manifold (M; g) is �-noncollapsed at the scale of
p
� :
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Let�s collect the facts about �:

Proposition 10 The following are true about �:

1. � (M; g; �) > �1 for any �xed manifold (M; g) and � > 0:

2. If (M; g (t)) satis�es the Ricci �ow for t 2 [0; T0] and � (t) = T0 � t; then
� (M; g (t) ; � (t)) is increasing.

3. There is a constant c = c (d) depending only on dimension such that the
Riemannian manifold (M; g) is �-noncollapsed at the scale of

p
� at every

point for � = exp (� (M; g; �)� c) :

We can now prove:

Theorem 11 (Perelman�s noncollapsing theorem, �rst version) Let (M; g (t))
be a solution to the Ricci �ow on compact 3-manifolds for t 2 [0; T ) such that
at t = 0 we have

jRm(p)jg(0) � 1
V
�
Bg(0) (p; 1)

�
� !

for all p 2 M and ! > 0 �xed. For any � > 0; there exists � = � (!; T; �) > 0
such that the Ricci �ow is �-noncollapsed for all (t0; x0) 2 [0; T )�M and scales
0 < r0 < �. We could also take � = � (t) and get a similar result, as long as
� (t) is uniformly bounded on [0; T ):

Proof. We already showed that for a given � and metric, � (M; g; �) has a lower
bound. For any r20; we see by monotonicity that

�
�
M; g (t) ; r20

�
� �

�
M; g (0) ; r20 + t

�
:

Thus we have that if

�0 = inf
�
�
�
M; g (0) ; r2

�
: r2 2 (0; �+ T )

	
then

�
�
M; g (t) ; r20

�
� �0:

Thus (M; g (t)) is �-noncollapsed at the scale of r0 for all

� = exp (�0 � c) � exp
�
�
�
M; g (t) ; r20

�
� c
�
:

We need to see that �0 is not �1: Since T is �nite, there is no problem at the
top of the interval for r2: It can be shown that as r2 ! 0+; �

�
M; g (0) ; r2

�
! 0

(in the interest of time, we will not show this) and so there is no problem at the
other side.

Remark 12 This is a bit stronger than what I proposed in an earlier lecture. I
think Tao was thinking about future incarnations of this theorem, which is why
he formulated as he did.
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