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1 Gradient flow

Formulating an equation as a gradient flow has many advantages. Consider the
heat equation
of

a8

on a compact Riemannian manifold. It is easy to see that if one considers the

energy .
B =3 [ 9rl,av.

that if we take the time derivative of the energy when f satisfies the heat
equation, we get

T0=[ v (;f) av
J o0 (3)
= —/M (Af)?dV <0.

Thus we immediately get that the energy is decreasing and that stationary points
are harmonic functions, i.e., functions which satisfy A f = 0. This monotonicity
also tells us that f cannot have periodic solutions which are not fixed points,
for if f(t1,2) = f(t2,z) for all =, then E (f (t1,:)) = E(f (t2,-)), and the
monotonicity implies that Af = 0 for t € [t1, t2].

The monotonicity is true in general for a gradient flow. If one has an energy
E (f), one defined the gradient flow as

of

i +grad (E),

where the gradient vector grad (E) is given so that

dE(X) = g(X,grad (E)),



for some metric g on the space of functions. In our case that g is the L? metric
(which uses the Riemannian metric g on M).

It would be nice to represent Ricci flow in this way. It is not at all trivial to
do this.

2 Ricci flow as a gradient flow

An obvious choice of functional is the Einstein-Hilbert functional:
EH (g) = / RdV.
M

To calculate its variation, recall that if we have a variation of the metric (dg),; =
h;j, then we get

R (h) = — (Rc, h) — Atrg (k) + divdiv h.
It is not hard to see that since

dlogdet g = gijhij

S0
1
d+/det g = dexp (2 log det g)
1
=3 (trg h) \/detg
SO

5(dV) = % (12, h) V.

Using the above formula we get

§(EH) (h) = /

M

_ /M < (Re, h) + %R(trg h)) av

:/ <1Rg—Rc,h>dV.
M \2

Remark 1 Here we used the divergence theorem for a compact Riemannian
manifold, which says that

(— (Re, h) — Atry (h) + divdivh + %R (trg h)) av

/ (divT, S)dV = — / (T, VS) aV,

for any n-tensor T and (n — 1)-tensor S. More explicitly,

/giljl "'gi”jngmvaioil---inSjm---g‘ndv:/giljl ~ g g 0 iy i, VS g, AV



So critical points of the Einstein-Hilbert functional satisfy the Einstein equa-
tion. The gradient flow would be

0 1

—g=—-2(Rc—=Rg|.

at? < Tt >
The problem is that this flow is not parabolic and there is no existence theory
for such equations.

Let’s try a new tactic. Replace dV' by a fixed measure dm. Then the func-
tional

H(g) = /M Rdm

satisfies the variation
0H (h) = / (—(Rc, h) — Atry (k) + divdiv h) dm.
M

You don’t lose the last two terms with the divergence theorem, since that only
works with the volume measure. However, we can consider the Radon-Nikodym

derivative and write i
m
dm = —dV
v

for a positive function ‘;—"?. We can write

d
m e .

av
Then,
SH (h) = / (= (Re, h) — Atry () + divdivh) e~/ dV
M

can be integrated by parts to get
0H (h) :/ (—(Re,h) = (Vitrg (), Vf)+divh-Vf) e~ Tav
M
:/ (= (Re.h) + trg (h) AT — try () [V = (0. V1) + A (VL. 1)) e v
M
:/ (=Re=V2+ (A= [VI?) g+ VIS R) e av.
M
Remark 2 Tao often uses (-,-) to denote the Euclidean metric locally, and
so explicitly puts in g ’s in this case. We will understand that (-,-) requires

the metric, and so when quantities like this are differentiated, we also need to
differentiate the metric, as we will see below.

2

) dm.

We need to add another term, and so we get

ooy o




We now need that
0=25(dm) =26 (efdV) =—(6f)efdV + %trg he=1dV
= <5f+ %trg h) e fav
Thus we have that

1
5f: itrgh

Let
E(g) = / (§9V 1V, f) el v

where dm = e~fdV is fixed (so that f = —logdm/dV and §f is expressed as
above). We can then compute

SE(h) =46 [ / (9"VifV;f) e_de}
:/<—<h7Vfo>+2(Vf7V(6f)>—|Vf|25f+;|Vf|2trgh> e~ fav
= [ (- 4590 287 @1 4 IV 05 + VA ey ) e fav
— [ ({n=v1vsr =09+ V17 g)) e Tav.

Now, since F = H + E, we have
SF(h)= [ (—=Rc—=V2f,hye fdV.
M

Thus the gradient flow of —2F is

dg 2
— =-2R -2 .
ot c(g) —2V°f
This is almost Ricci flow, but not quite. The f is changing, too, by the equation
of
— =-Af—R.
ot /

This is a backward heat equation, which it turns out will make it useful to probe
backwards.
Notice that
2v2f = EVfgv

the Lie derivative of ¢ in the direction V f. This means that the flow above
differs from Ricci flow by a diffeomorphism. Instead, we can consider g = ¢*g,
where ¢ is the flow of diffeomorphisms generated by V f, and we will see that g
evolves by Ricci flow. Furthermore, f will differ by a Lie derivative, and

Lyif=df (Vf)=|Vf]?



(where is the metric in here? It is in V f, which is a vector field gotten by raising

the index on df) and so under the new flow, f = f o ¢ evolves by
or
ot
Example 3 (Fundamental, important example) Let (M,g) be Fuclidean
space M =R? and let
2
||

f(t,.’L‘) = %

— 0, f - R+|VS.

+ %llog47'r7' = —log [(47.‘.7_)—d/2 e—\m\2/(47—)}

where T = tg — t, Notice that e~fdzx is the Gaussian measure, which solves
the backward heat equation (the fundamental solution to the heat equation). If
t < tg, this choice of g and f satisfy the equations

99

Y — 2Re(g) (1)
0
N 7 2)
We can check:
af o ||«> d
afa ?+§10g47ﬂ'
_lf a
42 27
T
Vf—;
2 ol
IV f] =42
d
Nf=—
! 2T

so it works.

Notice that when we pull back by ¢, the measure ¢*dm is not static. Thus
it makes sense to rewrite the functional as

F(M,g,f)= /M (R+ |Vf|2> e~ Tav.

Notice that this functional is invariant under diffeomorphism, i.e.,

F(M,¢"g,fo¢)=F(M,g,9)

for any diffeomorphisms ¢. We also have that under the coupled flows (1) and

(2),
%IZ (M, g, f) = 2/ IRe+V2f| e/ av.



Thus we have that F' is monotone increasing under Ricci flow. Unfortunately,
now we have to explicitly deal with this quantity f. To eliminate this, we take
the infimum:

A (M,g) = inf {F(M,g,f) : /M e fdv = 1}

(the infimum is over f). Using the following exercise, we can show that A is
finite.

Exercise 4 Show that A (M, g) is the smallest number for which one has the

inequality
/ (4 Vul? + Ruz) dv > )\/ w2dv,
M M

where u is in H' (M) = W12 (M), the Sobolev space of functions with 1 deriva-
tive in L? (so it has norm || f|| g = [ (|Vf|§ + f2) dV for C! functions). Hint:

show that we can assume u is positive and then write u = e~ 1/2. Thus X is the
smallest eigenvalue of the operator —4Agu + R.

Using the exercise, one sees that the fact that every compact manifold sat-
isfies a Poincaré inequality,

/ |Vu\2dV2c(d)/ u?dV,
M M

implies that A is bounded below, basically, by the best constant in the Poincaré
inequality plus min R. Note that the Poincaré inequality constant depends on
the dimension. We will see later a similar inequality for which the constant does
not depend on dimension.

Furthermore, one can prove that A is realized by a positive function u =
e=f/? with lull z2(ary = 1. Note that H' (M) embeds compactly into L? (M)
since M is compact. Thus if we take a minimizing sequence {u,} in H', there
is a subsequence (which we also denote by {u,} which converges in L? to a
function u. Now consider:

et ntyors [ (s it
=5 (9 o) R =)V 55 f (19 P4 B ) v

SO

%/ (|v (tn — tm)|* + R (un — um)Q) av = / (|Vun\2 + Ru;i) % +/ (|Vum|2 + Rufn) av

1

=5 [ (17 ot wm) P+ R+ ) av.



The right side goes to zero in the limit since the terms go to A, A and —2A\. Also,
we know that

— min | [fun — |y, < /R(un — ) dV < min |R] [[tn — ]l

and each term goes to zero. Thus we know that the sequence {u,} is Cauchy
in H' and since H' is complete, it must converge to a function in H'.

Since A is attained at a function, we can sometimes prove inequalities like
the following (taken from the notes of Kleiner and Lott):

Let h (s,t,2) be a two-parameter family of functions such that

h(s,to) = fu (to + s)
oh 9
I b .
- h+ —R+ |Vh|

There is a solution to this for ¢ < ¢y since the equation is backwards elliptic.
(Note: we have only shown that f, is in H!, so we mean a weak solution to
the parabolic equation. We could also show that f,, as a minimizer, satisfies a
particular elliptic equation, which implies that f, is smooth by elliptic regularity
theory.)

)\(750) S F(M,g(to) ,h(S,tQ — S))

=F (M,g(to+s),h (s to)) — 2/ U IRe (g (to + 0)) + V?h (s, t0 + )| e‘h(S’tOJ"’)dV} do.
0 M
We then have

Ato) < A(to + 5)72/ [/ IRe (g (to +0)) + V2h (s, to + U)|2 eh(s’t"“’)dV} do
o LM

and so
13D . Ato+s) = A(to)
—(ty) = 1
ot (to) s—1>%1+ s
2 S
> lim f/ {/ IRe (g (to + 7)) + V2h (s, to + (7)|2 eh(S,to+U)dV:| do
520+ s Jo LM

= 2/ IRe (g (t0)) + V2h (0, k)| e MO0 qy
M

B 2/ [Re (g (o)) + V2f (to)|" e -V
M

We can now derive



- >2/|Rc+V2f*’ e fdv
>

/ (R+ Af)e-dv
{/ (R+ Af) ef*dV} i

U (R+ |Vf*|2) e_f*dVr

| %
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3 Perelman entropy
We now wish to make our functional scale invariant (so that we get a critical
quantity, not just subcritical). In particular, we know that

dFTYL
dt

(M, g) = 2/ IRe +V2f| e~/ av
is fixed (under the gradient flow) if

Rc = —V2f,
i.e., if (M, g) is a gradient Ricci soliton. We wish to have a new functional which
is fixed if (M, g) is a gradient shrinking soliton, i.e.,
9 1

for some 7 > 0. A round sphere is a gradient shrinking soliton, so it makes sense
that we would want something like this. Under the Ricci flow, this structure is
preserved except that 7 decreases at a constant rate.

First note that if we consider the Nash entropy

i B~ [ (e ) am = 1

dN,,
= _—/M(—Af—R)dm

_ /M (R+IVSF) dm = F (M, g).

then

This will come in handy. Now, suppose we want a quantity W (M, g) such that

dm.

1 2
:/ ‘Rc—l—VQf— —g
M 2T




But in this case, would not have scale invariance for W, since t scales like distance
squared, so the integrand should scale like distance squared. We will fix this by
assuming

v _

dt
and trying for ,
% =27 /M ’Rc +V2f — %g dm. (3)

Now, to find such a quantity, consider

2

1 1 d
Re+V2f = =g = IRe+V2f|* = = (R+ AF) + 5.
T T 4T

Thus we have that

2
1 dF, d
2 R 2f— —g| dm=71—-" —2F,, + —
7'/M’ c+Vof 5 9| dm=T1— +2T

d d
= % <’7—Fm—Nm_2log7—) .

This is what our W,, would be. However, as we did last time, we wanted to
reparametrize so that
dm =e Tadv

where dV is evolving according to Ricci flow evolution. This time, we will change

d
f=f- §log (47T)

so that :
dm = eV = (47‘(‘7’)_d/2 e~1av.

Remark 5 This looks like the heat kernel for Euclidean space, which is why
this particular normalization is given.

Note that the preservation of dm implies that

d of 1
o ot + 5 trh =
Under the gradient flow
dg 2
Y = _92Rc-2
5 Re—-2V~f,
we have B
of d
- =——R—-NAf.
ot 27 i /



Thus we get for
d
WTrL (M,Q,T) = TFm - NTrL - 5 IOgT
<12 - d _ F
:/ [7’ (R+ ‘Vf‘ ) +f- 210g(47r)} (47) 42 =1 qy

Actually, we usually renormalize this to vanish in the Euclidean case, and so we
can change the d term appropriately to

7|2 7 —d/2 _f
Wm(M,gﬂ'):/ T R‘F‘Vf’ —|—f—d (47‘(’7’) e 1dV.
We can also define the Perelman entropy as the functional
W (Mg, f,7) = / [r (R + |Vf|2) +f- d} (4nr)" 2 e fav
where ¢ is a Riemannian metric, f is a function on M, and 7 is a positive
constant.

If g satisfies the Ricci flow, then we need to pull back f to get the three
evolutions

dg

af d B 2

% 2 R—Af+|Vf] (5)
dr

@ -t

Under these three, the Perelman Entropy satisfies

2

av (47r7')7d/2 e Tdv.

E(M,g,fﬁ) :27/

1
Re+V2f — —¢g
M 2T

We would like to find a minimum over all functions f and constants 7 so
that we have an invariant of the Riemannian manifold. However, it is not yet
clear that such an infimum exists. Recall that last time, the existence followed
from a Poincaré inequality. In this scale invariant setting, the existence of a
minimizer will follow from a log-Sobolev inequality.

4 Log-Sobolev inequalities

Let’s first consider what happens if g is the Euclidean metric. We would like to
switch to a function which looks like the heat kernel, namely,

w=(4rr) e 7,

10



Recall that our model case is when f = |z|® / (47) , in which case this is precisely
the backwards heat kernel. The backwards heat kernel satisfies:

ou
A
at “
for 7 > 0 and
lim w(r,z) = do (x),

T—0~

weakly, where dg is the delta function. Furthermore, one can check that

/ udz = / (4m7)~ Y2 el /6 gy = 1 (6)
R¢ R

for any 7. The backwards heat kernel can be used to solve the heat equation
with some given final conditions, e.g., to solve

du
A
dt u
uw(T,z) = f(z),
we see that the convolution
w(t,w)= [ fy) (@rr)” e v/ G0 gy

Rd

is a solution.

Exercise 6 Show that all of this is true. Hint: to show (6), turn the integral
into polar coordinates and assume the dimension is at least 2. For the dimension
1 case, there is a trick involving turning it into a dimension 2 integral and
separating.

We can check that for g Euclidean and f as above, we have

2
W(M,g,f,f):/ [@T ](4w7)_d/26|x|2/(47)dx.

One can show that this is zero since
_ 2 —d/2 _—f
W (Mg, f,r) = [ [27 (19117 = &7)] (amr) ™ e da,

and integrating by parts (needs to be justified) shows this is equal to zero.
Now we re-write W by replacing f with u. We see that (remembering still
we are in Euclidean space),

W:/P

|Vul|® d
2 —ulogu dw—§1og(47r7')—d

11



using identities such as
u = (47r7)_d/2 e 7.
d
logu = -3 log (477) — f

Vul® = (4r7) " VP e
B |Vu|2

u?

V1

Tao shows that one can show that W > 0, which implies a log-Sobolev
inequality

2
d
T/ [Vl de/ulogudx+§log(4ﬂ'T)+d,

u?

or as it is usually stated, with ¢? = u,

47‘/|V¢|2d$ > 1/¢>2 log ¢*dx + glog (477) + d.
T

For the general case, we have

2
T (Rqu [Vl ) —ulogu

u2

WOLg for) = [

d
av — 5 log (4n7) — d

One can show that the
W(MagvaT) > _C(MagvT)‘

This implies essentially a log-Sobolev inequality, i.e.,
d
T/R(bzdv + T/4 IVo|>dV > —C + /¢>2 log $?dV + 3 log (477) + d.

In fact, we can take the

w(M,g,7)= inf{W(M,g,f,T) : /(47”)%/2 e fdv = 1}7

which is the best possible constant —C. It can be shown that p is finite, which
is what we could call a log-Sobolev inequality.

We can now show that if g (¢) is a solution to Ricci flow on ¢ € [0, Tp] and
7 =Ty —t, then u (M, g,7) is increasing. The first exercise is important:

Exercise 7 Show that (M, g,7) = W (M, g, f.,7) for a function f. € H' (M) .
(Not quite true... What is the true statement? Hint: you need to change to a
new function ¢.)

12



Once we know that p is realized by a function, we can show that u (M, g (t), T

is increasing as follows. Calculate p (M, g (to), 7 (t0)) = W (M, g (to), f« (to), 7 (to

for some minimizer f, (¢o). For any time ¢ < tg, we can solve the equation for
f in 4 backwards to ¢ with initial condition f (tg,x) = f« (to, ) (since f. is in
H' (M), there exists a weak solution to this parabolic flow). We know that

(M, g (t),7 () <W(M,g(t),[f(t),7()
SW (M, g (to), f+ (to) , 7 (to)) = p (M, g (to) , 7 (t0)) -

5 Noncollapsing

We will now show that log-Sobolev inequalities imply noncollapsing. Suppose
we have a ball B (p,/7) with bounded normalized curvature, i.e.,

Rm (z)] < -

for x € B(p,+/7). Then |R|7 < c¢(d) for some constant depending only on
dimension. Then the log-Sobolev inequality can be rewritten as

d)/¢2dV+7/4|V¢\2dV > M(M,g,7)+/¢2 log ¢2dV + glog (477) + d.

Suppose ¢ is a function supported on B (p, 1/7) such that fM $*>dV = 1. Then
Jensen’s inequality implies that

5 e (sl ) )

1 1

=V B BV B)

where B = B (p,+/7). (Recall that Jensen’s inequality requires a probability
measure.) So

/ $?log ¢?dV > log
M

We now get, for this particular choice of ¢,

1
V(B)

Fd/2

m—cl(d).

7 [196F aV = p(M,9.7) + log
Now we will specialize ¢ even more. Suppose

6 (@) = oo (d(\”};p))

for some bump function ¥ on the real line which is 1 on [0, 1/2] and supported on
[0, 1] (technically, we only need half the bump function, which is how I described
it). Thus ¢ (z) = c on B (p,+/7/2) and c is such that

/ P2dV =1,

13
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so ¢ < V(B (p, ﬁ/?))fl/z. We can choose ¢ so that |V¢| < ¢’¢/+/7 on the

ball (for some constant ¢”’), and so

V (B) /2
> nu(M,g,7)+1log —— — ' (d).
Py 2 #0807 (@

4c
V(B)
Finally, we can use a Bishop-Gromov volume comparison theorem:

Theorem 8 (Bishop-Gromov comparison) If (Md,g) is a complete Rie-
mannian manifold with
Rc>(n—1)Kg

for some K € R, then for any p € M , the volume ratio

V(B(p,r))
Vi (B (px;7))

18 non-increasing as a function of v, where px is a point in the d-dimensional
simply connected space of constant sectional curvature K, and Vi (B (px,r)) is
the volume of a ball of radius r in that space.

In particular, we have that

vV (B) - V (Bi2)
Vo B v®)) ~ Vorpr (B (oo V72))

and thus there is a & = «a (7, d) such that

V(B)
V(Bi2) ©
In fact, « is independent of 7 since
V71/r (B (pfl/'m ﬁ)) =V_1(B(p-1,1))
V_i/r (B (p=1/::V7/2)) = V_1 (B (p-1,1/2)).
Thus there is a constant ¢’ which depends on d such that
/2

(B)’

T

" —p(M,g,7) > log
ie.,
V(B) = (en) 212,

which implies k-noncollapsing at a scale /7 for k = exp (1 — ¢”’) . Let’s formu-
late this into a proposition:

Proposition 9 There is a constant ¢ = ¢ (d) depending only on dimension such
that if i (M, g,7) is finite, then for k = exp (u (M, g,7) — c), the Riemannian
manifold (M, g) is k-noncollapsed at the scale of \/T.

14



Let’s collect the facts about p.
Proposition 10 The following are true about :
1. p(M,g,7) > —c0 for any fized manifold (M, g) and 7 > 0.

2. If (M, g (t)) satisfies the Ricci flow fort € [0,To] and 7 (t) = To — ¢, then
w(M,g(t),7(t)) is increasing.

3. There is a constant ¢ = c¢(d) depending only on dimension such that the
Riemannian manifold (M, g) is k-noncollapsed at the scale of \/T at every
point for k = exp (u(M,g,7) —c).

We can now prove:

Theorem 11 (Perelman’s noncollapsing theorem, first version) Let (M, g (t))
be a solution to the Ricci flow on compact 3-manifolds for t € [0,T) such that
at t = 0 we have

[Rm (p)[ 0y <1
V (Byo) (p.1)) 2w

for allp € M and w > 0 fized. For any p > 0, there exists kK = k (w, T, p) > 0
such that the Ricci flow is k-noncollapsed for all (to, o) € [0,T) x M and scales
0 <ro < p. We could also take p = p(t) and get a similar result, as long as
p (t) is uniformly bounded on [0,T).

Proof. We already showed that for a given 7 and metric, p (M, g, 7) has a lower
bound. For any rZ, we see by monotonicity that

p(M,g(t),rd) > pu(M,g(0),r5+1).
Thus we have that if
po = inf {1 (M, g (0),7%) : 172 € (0,p+ 1)}

then
(M, g(t),r5) = po.
Thus (M, g (t)) is k-noncollapsed at the scale of ¢ for all

K =exp(po —¢) <exp [ (M,g(t),r5) —c].

We need to see that g is not —oco. Since T is finite, there is no problem at the
top of the interval for r2. It can be shown that as 72 — 0%, u (M, g(0) ,T2) —0
(in the interest of time, we will not show this) and so there is no problem at the
other side. m

Remark 12 This is a bit stronger than what I proposed in an earlier lecture. I
think Tao was thinking about future incarnations of this theorem, which is why
he formulated as he did.
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