Math 538 Problems 1

Spring 2009

1) Show that if (M, g) is κ -noncollapsed at x_0 at the scale of $\sqrt{\tau}$, then it is κ -noncollapsed at x_0 at all scales smaller than $\sqrt{\tau}$.

2) Recall the functionals

$$F(M,g,f) = \int \left(R + |\nabla f|^2\right) e^{-f} dV$$
$$W(M,g,f,\tau) = \int \left[\tau \left(R + |\nabla f|^2\right) + f - d\right] (4\pi\tau)^{-d/2} e^{-f} dV$$

and their corresponding

$$\lambda(M,g) = \inf \left\{ F(M,g,f) : \int_{M} e^{-f} dV = 1 \right\}$$

$$\mu(M,g,\tau) = \inf \left\{ W(M,g,f,\tau) : \int_{M} (4\pi\tau)^{-d/2} e^{-f} e^{-f} dV = 1 \right\}.$$

By considering variations of the function f (with M, g, τ fixed), show that the minimizers f_* for λ and $f_{\#}$ for μ satisfy the differential equations

$$2 \triangle f_* - |\nabla f_*|^2 + R = \lambda,$$

$$\tau \left(R + 2 \triangle f_{\#} - |\nabla f_{\#}|^2 \right) + f_{\#} - d = \mu.$$

Hint: you must use Lagrange multipliers to enforce the constraint.

3) Suppose $(M,g) = ([0,a] \times [0,b] / \sim, g_{flat})$ is a flat torus gotten by identifying the interval $[0,a] \times [0,b]$. Find constants c_* and $c_{\#}$ such that $f_* = c_*$ and $f_{\#} = c_{\#}$ satisfy both the differential equations and the constraint equations (the constants c_* and $c_{\#}$ should depend on the volume, which equals ab). In fact, you could do this for any closed manifold with R = 0.

4) On the same torus, suppose $a \leq b$. For which scales $\sqrt{\tau}$ is (M, g) a-noncollapsed? How does this compare with the estimate one might get from part 3 and our work relating log-Sobolev inequalities to noncollapse?