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Abstract
We study the Keller–Segel model of chemotaxis and develop a composite
particle-grid numerical method with adaptive time stepping which allows
us to resolve and propagate singular solutions. We compare the numerical
findings (in two dimensions) with analytical predictions regarding formation
and interaction of singularities obtained through analysis of the stochastic
differential equations associated with the model.

PACS numbers: 02.60.Nm, 02.70.Ns, 05.10.Gg, 87.10.Ed, 87.10.Mn, 87.17.Jj

Mathematics Subject Classification: 35K58, 45G05, 65C35, 82C22, 82C31,
82C80, 92C17

1. Introduction

In this work we discuss a numerical method for studying singularities (blow-ups) in the Keller–
Segel (K–S) model of chemotaxis [31] and in the systems with similar mathematical structure,
such as the McKean–Vlasov (McK–V) model of charged interacting particles [46]. (Patlack
derived similar equations nearly two decades prior to Keller and Segel [34].) We present
illustrative numerical examples and provide analytical insights into formation and interaction
of singularities from the point of view of the associated stochastic processes. We concentrate
on the details of numerical modelling and several specific aspects of mathematical analysis.
An interested reader should consult the exhaustive reviews for discussions of physical and
biochemical phenomena involved in chemotaxis [27, 28, 41, 42].

Numerical treatment of equations with singular solutions is challenging because it requires
a reliable and efficient approximation of singular functions or even distributions. For example,
the conventional finite-difference or spectral methods are not fit for dealing with δ-functions
arising in the K–S model. While most finite-element and discontinuous Galerkin methods
are efficient and accurate as long as the solutions remain sufficiently smooth, in the vicinity
of singularities they struggle with positivity issues, unphysical oscillations, and related
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problems [20–23, 38, 39]. (A conservative upwind finite-element method introduced by Saito
for the elliptic K–S model overcomes some of these issues [35].) Generally, unless some
regularizations are introduced, these methods cannot propagate solutions past the moment of
blow-up altogether. The method presented in this work avoids such difficulties because the
singular field is modelled by an ensemble of interacting particles. The singularities manifest
themselves as particle aggregates, harmless from the numerical standpoint. Essentially, this
approach to chemotaxis reverses the continuous PDE description of ensembles of interacting
particles. Such methods for sufficiently well-behaved nonlinear integro-differential equations
have been studied by Bossy and Talay [9, 10]. Haškovec and Schmeiser have recently
introduced a method utilizing similar ideas [24, 25]. Their method, however, is exclusively
particle-based and is limited to one specific variety of the elliptic K–S model in the entire
plane. Our method employs the grid and particle representations of the fields simultaneously
and is suitable for both elliptic and parabolic K–S equations; it does not require an explicit
knowledge of Green’s function in a specific domain. It is also applicable to a wider range of
kinetic problems. (Other technical differences are discussed where appropriate.) Conceptually,
our method is more in the spirit of the particle-in-cell (PIC) methods widely used, e.g.,
in plasma physics [1, 5, 16, 26, 29, 45, 47]. Another interesting numerical method has been
recently implemented for the one-dimensional McK–V system [6]. It uses that the McK–
V equation describes steepest descent dynamics in the Wasserstein-2 space of probability
measures and is suitable for studying singular (measure-valued) solutions.

The usefulness of the particle approach extends beyond numerical methods. Analysis of
the stochastic processes underlying the K–S PDEs yields insights into formation and interaction
of singularities. In particular, we derive an expression for the critical mass required to create
or sustain a singularity and relate the non-uniqueness of solutions of the K–S equations to
the underlying diffusion process. Even though our treatment is rather informal, it sheds new
light on the mechanism of blow-ups. Some of the results presented in this paper have been
proven using different methods and under various assumptions. Much effort has been directed
towards obtaining the exact value of the critical mass [4, 8, 11, 13, 17, 18, 32]. Velázquez
introduced measure-valued solutions and extended the K–S equations beyond the point of
blow-up [43, 44], see also [19]. These works together with the study of the K–S equations
as a hydrodynamic limit of interacting particle systems by Stevens [37] link the particle and
PDE descriptions of chemotaxis. We also mention a rigorous analysis of phase transitions in
the McK–V system [15] (it only covers sufficiently regular interaction kernels not relevant to
the K–S model) and an investigation of singularity formation in several related aggregation
models [2, 3, 12] (these models do not have diffusive terms and correspond to one special case
of the K–S model).

The K–S model is prescribed by the following system of PDEs:

∂tρ(x, t) = ∇ · (µ∇ρ − χ ρ∇c), (1a)

α ∂t c(x, t) = &c − k2c + ρ . (1b)

The function ρ(x) is the density of active particles (bacteria), c(x) is the concentration of
chemoattractant. For numerical simulations we use Neumann (no flux) boundary conditions,

∂nc(x) = ∂nρ(x) = 0 for x ∈ ∂' (2)

in a two-dimensional square domain ' = (0, L)2. We assume that ρ(x) integrates to M over
the entire domain; M is the total mass of the bacteria. By rescaling the equations, we can
always achieve that α = 0 or α = 1. In the former case the model is called elliptic, in the
latter—parabolic. The parameters µ, χ , and k are constants. (The numerical method, however,
may be readily extended to a more general class of equations, see section 2 for details.)



A study of blow-ups in the Keller–Segel model of chemotaxis 83

Figure 1. A snapshot (t = 10) of the concentration field c(x) illustrating multiple blow-ups in
the parabolic model. The parameters are as follows: α = k = 1, χ = 0.1, µ = 0.005, M = 25.
The spatial domain, 3.2 × 3.2, is discretized using the mesh size &x = 0.05; the time step for
propagation of the concentration field is &t = 0.1; 4096 particles are used to approximate ρ(x)
(see section 2 for details of the numerical scheme). Some random initial data is used at t = 0.

Physically, these equations describe the following phenomenon. The chemoattractant
spreads diffusively and decays with rate k2; it is also produced by the bacteria with rate 1.
(In the elliptic case these rates are infinite, i.e., the chemoattractant ‘thermalizes’ infinitely
fast.) The bacteria diffuse with mobility µ and also drift in the direction of the gradient of
concentration of the chemoattractant with velocity χ |∇c|; χ is called chemosensitivity.

In this work we are interested in singular solutions to the K–S equations. A typical
situation is illustrated in figure 1 where a snapshot of the concentration field c(x) is displayed.
The peaks correspond to δ-function-type singularities of the particle density ρ(x). (Displaying
bacteria density itself is not very illustrative due to its highly singular nature.) As mentioned
above, the principal challenge for numerical simulations is in approximating the fields ρ(x)

and c(x) as they become unbounded. Our idea is to use a particle method for the evolution
of ρ(x), so that its singularities manifest themselves as harmless particle aggregates. For
the propagation of c(x), we use a second order implicit finite-difference scheme because of
its simplicity and excellent stability properties. Even though c(x) also becomes unbounded
analytically (it remains large but bounded for a given discretization), its weak logarithmic
singularities do not cause any problems for sufficiently stable schemes. In general, one may
use a different solver for propagation of the concentration field (including a particle-based
solver as well).

The particle-based description utilizes that the PDE (1a) is a Fokker–Planck equation for the
evolution of the probability density of the bacteria. Suppose first, that we are given some
time-dependent concentration field c(x, t) and want to solve equation (1a). Let X(n)

t be
i. i. d. random variables distributed according to the initial condition ρ(x, 0) at time t = 0
and satisfying the following stochastic differential equations (with reflecting boundary at ∂')
for t > 0:

dX(n)
t = χ∇c

(
X(n)

t , t
)

dt +
√

2µ dW (n)
t . (3)
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Then, using the strong law of large numbers and that (1a) is a Fokker–Planck equation for the
SDEs (3), we can see that as N → ∞, the empirical probability densities,

PN(x, t) = M

N

N∑

n=1

δ
(
x − X(n)

t

)
, (4)

converge almost surely to ρ(x, t). (This convergence is in the sense of measures, point-wise
in t ; a stronger convergence can be established with more effort.) Thus we can simulate
equations (3) for the particles, and approximate the density ρ(x, t) using PN(x, t) whenever
required.

Rigorously justifying this approach to the full K–S system (1a) and (1b) is more
challenging because in the full system the concentration field c(x, t) is a functional of ρ(x, s),
s ! t , rather than some a priori prescribed field. This implies that equations (3) become
coupled and we end up with a system of stochastic interacting particles (with memory in the
parabolic case). Some progress in this direction, nevertheless, has been made, starting with
the work of McKean on propagation of chaos [33], see also Sznitman [40]. Stevens derived
the K–S equations as limit dynamics for interacting stochastic particle systems via smoothing
and rescaling the interaction potentials in a particular fashion [37]. Haškovec and Schmeiser
proved convergence of their particle method under reasonable assumptions via analysis of the
associated BBGKY hierarchy [25].

2. Numerical method

As mentioned in the introduction, the principal idea behind our numerical scheme is to
employ a particle method for the evolution of the particle density field ρ(x, t). The current
implementation utilizes an implicit second order finite-difference scheme for simulating
equation (1b) and an explicit Euler–Maruyama scheme for the stochastic particle dynamics
(3). We discretize the computational (rectangular) domain with grid size &x and propagate the
concentration field Cij using the time step &t . The particle density field Pij is reconstructed
from the particle locations. We evolve the particles using adaptive time steps which may be
smaller than &t ; this is needed for stability reasons (see below).

The particle dynamics is simulated using the forward Euler–Maruyama scheme,

X(n)(t + &τ ) = X(n)(t) + χ∇c
(
X(n)(t)

)
&τ +

√
2µ&τ N(0, 1), (5)

where N(0, 1) is a standard Gaussian random variable with mean 0 and variance 1. We enforce
the no-flux Neumann boundary conditions for ρ(x) by reflecting the particles escaping from
the spatial domain back into it. The gradient field ∇c(x) is approximated in two steps. First,
we construct the gradient fields CX and CY using the second order approximation,

CXij = 1
2&x

[
Ci+1,j (t) − Ci−1,j (t)

]
, CYij = 1

2&x

[
Ci,j+1(t) − Ci,j−1(t)

]
. (6)

Then we approximate ∇c(x) via bilinear interpolation using the values of CX and CY at the
four nearest grid points. Because |∇c(x)| becomes unbounded (very large numerically) in the
vicinity of blow-ups, it is essential to choose the time step &τ adaptively, see figure 2 and its
description for details. Consequently, if needed, we subdivide the timestep &t into smaller
intervals &τ (n) so that |∇c

(
X(n)

)
|&τ (n) < &x. (Each particle is simulated independently of

others, i.e. &τ (n) are chosen for each particle individually.) A failure to satisfy this condition
leads to overshooting in the vicinity of blow-ups, which in turn causes artificial oscillations
and damping. Knowing that in the direct vicinity of singular points, the concentration field
acquires logarithmic singularities, we can deduce that its numerical gradients may get as large
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Figure 2. Adaptive time stepping for particle dynamics. In this example a blow-up of the
concentration field occurs near a grid point with index j . While some particular time step is
appropriate for propagating the particles away from the blow-up (i), it may lead to overshooting in
its vicinity (ii, iii). Thus the particles incorrectly accumulate near the grid points j ± 1 rather than
j . One can avoid this phenomenon reducing the time step for the particle evolution whenever the
gradient of the concentration field becomes too large. Practically, it is sufficient to adjust the time
step so that the expected length of the particle jump does not exceed the mesh size &x.

as O(1/&x). Thus for the corresponding particles, the time step may become as small as
&τ (n) ∼ &x2.

The particle density field Pij (t) is reconstructed from the particle locations as explained in
the description to figure 3: each particle contributes fractions of its weight to the four nearest
grid points according to the bilinear interpolation rules. This approximation preserves the first
moment of the corresponding distribution. It is important to use this kind of moment-preserving
approximations, e.g., a simple bin-counting (assigning all weight of a given particle to the
nearest grid point) is unsatisfactory. The reason is that this creates an artificial flux towards
the grid points: the particles feel their own potentials which become artificially aligned to the
nearest grid points. This flux is sufficient to pin singularities to the grid points and disrupt
such phenomena as logarithmically weak interaction of singularities with each other and with
the boundary of the domain.

The concentration field is propagated according to the implicit second order finite-difference
scheme,

α

&t

[
Cij (t + &t) − Cij (t)

]
= 1

&x2
D

(2)
ij C(t + &t) − k2Cij (t + &t) + Pij (t), (7)

where D(2) is the standard second difference operator. It is essential to use an implicit scheme
for stability reasons because the concentration field acquires logarithmic singularities. This
scheme is quite efficient: even though it requires solving a system of linear equations, the matrix
of the finite difference operator is symmetric and banded, and may be Cholesky-factorized
before the actual computations. The extra computational cost of solving this linear system is
then alleviated by relaxation of the &t ∼ &x2 stability constraint of explicit schemes.

The presented numerical method may be generalized to other similar systems of the form

∂tρ(x, t) = ∇ ·
(
µ(x, ρ, c)∇ρ − ρv(x, ρ, c)

)
, (8a)

α∂t c(x, t) = ∇ ·
(
G(x)∇c

)
+ F(x, ρ, c), (8b)
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Figure 3. Schematic representation of the numerical scheme. The concentration field c(x) is
sampled on a uniform grid (!), while the particles (") move without any restraints. The particle
density ρ(x) is reconstructed via bilinear interpolation: each particle contributes fractions of its
mass to the four nearest grid points proportionally to the relative distances from the latter, e.g.,
a particle located at (x, y) within a unit-square grid cell contributes weights proportional to xy,
x(1 − y), y(1 − x), and (1 − x)(1 − y) to the respective grid points.

and to more complicated domains. This makes it a useful tool for studying various
aggregation phenomena for which the conventional finite-difference or finite-elements schemes
are inefficient.

From the numerical analysis point of view, we do not currently have rigorous estimates of
the convergence rates for this scheme. Partially, this problem is complicated due to the singular
nature of solutions to the K–S equations. In particular, once the blow-ups are formed, one
must interpret the K–S PDEs in some proper sense, and while our numerical scheme is able to
propagate solutions for all times (i.e. it regularizes the PDEs in some fashion), relation of such
numerical solutions to a particular analytical regularization must be carefully investigated.
An additional challenge is that one must use some convergence criteria in measure-spaces,
e.g., using the Wasserstein metrics, because the regular function-space norms blow up when
the particle density acquires atomic components. On the other hand, we could speculate that
our method exhibits typical for this kind of schemes errors of orders O(&x2), O(

√
&t), and

O(1/
√

N) for regular solutions, see e.g., analysis for similar systems in [10]. To estimate the
error contributions due to space-time discretization, one could go along the lines of traditional
numerical analysis for parabolic PDEs and SDEs, however the dependence on N is more
challenging. Thus we perform series of experiments to verify convergence as the number
of particles, N , becomes large. Figure 4 illustrates these experiments. We vary the number
of particles per each grid point of the finite difference discretization, Ng, and observe the
mismatch that a particular solution has relative to the ‘benchmark solution’ calculated with
Ng = 1024. We can see that our guess of the O(1/

√
N) convergence holds up. We perform

a few more numerical experiments illustrating convergence of singular solutions in the end of
section 3, see figure 7.

3. Formation and interaction of singularities

We now concentrate on the elliptic (α = 0) case, though some of the reasoning is equally
applicable to the parabolic case as well. Generally, one can distinguish the soft and hard
blow-ups: in the first case the fields ρ(x) and c(x) become unbounded but ρ(x) does not
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Figure 4. Convergence of the method. The log–log plot displays L1 error of the bacteria density,
ρ(x), as a function of Ng—the number of particles per grid point of the finite difference mesh
for c(x). The error is computed at time t = 1, relative to a simulation with Ng = 1024. The
initial datum is a randomly generated smooth density with subcritical mass, M = 0.1. The
computational domain is a unit square, discretized with &x = 0.05; the other parameters are:
&t = 0.001, α = 0, k = 0.01, χ = 0.1, µ = 0.005. The crosses depict results of the simulations;
the grey line corresponds to the expected error of the order of 1/

√
Ng.

acquire atomic components, while in the second case the particle density field becomes a bona
fide distribution. Here we concentrate on the hard blow-ups which have a more apparent
physical meaning: atomic components of the particle density correspond to accumulation of
particles at some point locations on the given physical length-scale.

It is convenient to study the elliptic model in a slightly different form, as a McK–V system.
First, we solve equation (1b) for c(x):

c(x) = −
∫

'

Vd(x, y) ρ(y) dy = −Vd ∗ ρ(x). (9)

Here Vd(x, y) is the Green’s function for &− k2 in ', which is assumed to be d-dimensional.
The entire-space Green’s functions (the fundamental solutions) whose singular part is identical
to those in bounded domains are known explicitly:

V1(x, y) = −e−k|x−y|

2k
(d = 1); (10a)

V2(x, y) = −K0(k|x − y|)
2π

(d = 2); (10b)

V3(x, y) = − e−k|x−y|

4π |x − y|
(d = 3). (10c)

Here K0(·) is the modified Bessel function of second kind. Substituting expression (9) for the
concentration field c(x) into equation (1a) we get a closed integro-differential equation for the
particle density field,

∂tρ(x, t) = ∇ · (µ∇ρ + χρ∇Vd ∗ ρ) = ∇ ·
[
ρ∇ δE

δρ

]
. (11)
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Here the energy functional is given by

E(ρ) = µ

∫

'

ρ(x) ln ρ(x) dx +
χ

2

∫ ∫

'

ρ(x)Vd(x, y)ρ(y) dx dy. (12)

One of the features of the dynamics (11) is that the functional E(ρ) is non-increasing:

dE
dt

= −
∫

'

∣∣∣∣∇
δE
δρ

∣∣∣∣
2

ρ(x, t) dx ! 0. (13)

When ρ(x) becomes singular with respect to Lebesgue measure, the first (entropic) term in
(12) tends to infinity, which must be compensated by the second (interaction) term. If d = 1,
the Green’s function V1(x) is bounded below and so is the interaction term, thus the blow-ups
are not possible. This is no longer the case if d " 2 and so the blow-ups are permissible. A
more delicate analysis is needed to understand how exactly they are formed.

From standpoint of the stochastic process underlying the Fokker–Planck PDE (1a), the
atomic components of ρ(x) correspond to particles aggregating at point locations. Thus the
traps which do not allow the particles to escape must be created. Let us first investigate
when a particle aggregate creates a trap for a single particle diffusing in its field. Suppose
ρ(x) = Mδ(x), the corresponding concentration field is then proportional to the fundamental
solution (10a) and (10b). Equation for the radial component of the location of a single particle
diffusing in the field created by ρ is equivalent in law to the following SDE:

drt =
[
χc′(rt

)
+ (d − 1)

µ

rt

]
dt +

√
2µ dWt. (14)

For d = 1 we get

drt = −χM

2
exp(−krt )dt +

√
2µ dWt. (15)

This equation is sufficiently regular and does not allow for existence of a trap for any value
of M , so consistently with energy considerations, no blow-ups are possible in this case. For
d " 3, a similar reasoning shows that a trap of an arbitrarily small mass may exist. So the
interesting case is d = 2.

For d = 2, using that in the leading order, as r → 0, K0(r) ∼ − ln(r), we obtain the
following equation:

drt =
(
µ − χM

2π

)dt

rt

+
√

2µ dWt. (16)

This is a well-known Bessel process [30], it’s behaviour near the boundary at r = 0 depends
strongly on the value of M . In particular, when

M " 4πµ

χ
= M∗

c , (17)

the origin is the so-called exit boundary, a trap, i.e., the particles reach it in finite time, and
may never escape back to the domain r > 0. For our problem the implication is that the total
mass of at least M∗

c is needed for existence of a stable singularity in the particle density field.
For M ∈ (0, M∗

c ), the SDE (16) has the so-called regular boundary at r = 0. In this case
the particles may reach the origin, but are not necessarily trapped there, i.e., may also leave it
according to some rules which must be prescribed in addition to the SDE itself. This implies
that the original K–S PDEs alone are not sufficient to describe the blow-up dynamics and the
exchange of mass between the regular and singular components of the particle density when
the mass of the singularity is less than M∗

c .
The critical mass M∗

c is smallest mass such that a singularity does not shed its mass but
only absorbs particles from the smooth component. It is, however, twice less than the mass
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required to create a singularity from smooth initial data. Indeed, consider the N -particle SDEs
approximating the elliptic K–S equations:

dX(n)
t = −χM

N

∂

∂X(n)

N∑

i=1, i +=n

Vd

(
X(n)

t , X(i)
t

)
dt +

√
2µ dW (n)

t . (18)

To study the aggregation dynamics of the particle system, consider the variance of the empirical
probability density of the bacteria (4),

R2
t = 1

2N2

N∑

i, j=1

∣∣X(i)
t − X(j)

t

∣∣2; (19)

Rt will be referred to as the radius of the system. We concentrate on the problem in the
entire space with k = 0; this corresponds to V2(x, y) = 1/(2π) ln |x − y|. Analysis for the
other values of k, or in the bounded domains is similar (although more technical) because the
singularities of V2(x, y) are the same in the leading order. In this case, however, there exists
an explicit closed equation governing the evolution of Rt :

dRt =
[

2µ

(
1 − 3

2N

)
− χM

4π

(
1 − 1

N

)]
dt

Rt

+

√
2µ

N
dWt. (20)

The driving stochastic process Wt obeys the following SDE:

dWt = 1
N3/2Rt

N∑

i, j=1

(
X(i)

t − X(j)
t

)
· dW (i)

t , (21)

and can be shown to be a Wiener process using the Lévy characterization of Brownian motion.
We can immediately see that in the limit as N → ∞, if

M += 8πµ

χ
= Mc, (22)

the evolution of the radius obeys a well-known deterministic equation,

Ṙt = − γ

2Rt

, γ = 4µ(M/Mc − 1). (23)

Hence R2
t = R2

0 − γ t , and for supercritical masses (M > Mc) the blow-up occurs at time
T = R2

0/γ . It is independent of the initial distribution of mass except through R0. If M = Mc,
after the time rescaling, equation (20) may be rewritten as

dRt ′ = 1
2

dt ′

Rt ′
+ dWt ′ , t ′ = 2µt

N
. (24)

This equation describes a critical Bessel process with entrance boundary at R = 0, in this
case Rt ′ a.s. never hits zero, although it visits its arbitrarily small neighbourhood. In this
limit the particle system remains stochastic even as N → ∞ and does not approximate the
deterministic K–S equations. As t ′ → ∞, the particle system approaches blow-up infinitely
often, but never actually coalesces into a single particle, see [7].

Formation of singularities. Our first numerical experiment is designed to test how well our
numerical method predicts the value of the critical mass Mc required to develop a singularity
from smooth initial data. Notice, first of all, that due to reflection principle for the problem
with Neumann boundary conditions, singularity in a corner of the domain, ' = (0, L)2, only
requires a quarter of the critical mass. Since the singularity inside of the domain eventually
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Figure 5. Snapshots (t = 10 000) of the concentration field c(x) − M/(kL)2 demonstrating sub-
and supercritical behaviours in the elliptic (α = 0) model. (The constant is subtracted because
c(x) itself becomes unbounded in a finite domain as k → 0.) The other parameters are as follows:
k = 0.01, χ = 0.1, µ = 0.005; &t = 0.01, &x = 0.05, 4 · 103 particles. Initially, all particles are
distributed randomly with a slight bias towards (0, 0). In the supercritical case (M = 0.35, right
plot), a trap is created, while in the subcritical case (M = 0.34, left plot), all particles eventually
spread uniformly over the entire domain. The theoretical critical mass for the elliptic model with
k = 0 in the entire space is Mc = 2π/5 ≈ 1.26. Notice that only a quarter of the critical mass is
needed for a trap in the corner.

migrates into a corner, we perform our experiment in the corner to begin with. We scatter all
particles over ' with a slight bias towards (0, 0) and vary their total mass observing whether
the particles remain aggregated, or spread uniformly over the entire domain. The results are
presented in figure 5. For the specified values of the parameters, the calculated numerical value
of the critical mass lies between 0.34 and 0.35, while the theoretical prediction for elliptic
model with k = 0 in the entire plane is Mc/4 = π/10—slightly smaller. The mismatch
is a consequence of the simulation in a finite domain, the limit L → ∞, k → 0 is non-
trivial because equation (1b) with Neumann boundary conditions is not well-posed in ' when
α = k = 0. In particular, the boundary of the domain far from the corner where the singularity
is formed pulls the particles away from the singularity, effectively increasing the critical mass.

Interesting phenomena occur when a singularity with mass M ∈ (0, M∗
c ) already exists

in the system. In this case the trap absorbs the particles, though the latter may still escape
back into the regular component of the particle density. The diffusion process underlying the
K–S equations is not uniquely defined by its generator and additional rules for behaviour of
the particles at singular points must be specified. These rules are not inherently encoded in the
K–S equations and are related to non-uniqueness of K–S regularizations. From the modelling
perspective, the exchange of mass between the regular and singular components of the particle
density in this regime strongly depends on particular details of the numerical method. Note,
however, that if the initial particle density is regular, the smallest possible mass for singularity
is greater than Mc = 2M∗

c , so this scenario does not occur.

Interaction of singularities is illustrated in figure 6. The singularities attract each other and
are also attracted by the boundary of the domain. Equations governing their dynamics may be
derived following [19, 43, 44]. If the density ρ(x) is purely atomic, we obtain

ẋi (t) = −χ
∂

∂xi

∑

j +=i

mj V2(xi , xj ). (25)

Here mj -s are the masses of singularities located at xj -s, V2(x, y) is the Green’s function.
Note that unlike in the method of Haškovec and Schmeiser [24], in our method, the dynamics of
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Figure 6. Snapshots of the concentration field c(x) illustrating the motion and interaction of
singularities in the elliptic (α = 0) model. The other parameters are as follows: k = 1, χ = 0.1,
µ = 0.005, M = 4; &t = 0.01, 4 · 103 particles. Initially, the particles are placed around four
distinct locations; as time goes on, the singularities are formed, then they merge and travel towards
the boundary of the domain, and finally stabilize in the corners. (Notice the scale change for the
z-axis.)

singularities is not imposed by the numerical method explicitly, i.e., it is a natural consequence
of the stochastic particle dynamics.

Equations (25) are identical to equations (3) of the K–S model with particle diffusivity µ

set to zero. The naive reasoning is that once the traps are formed, the particles’ diffusion is
dominated by the (infinitely strong) drift and ceases to contribute into dynamics: the stochastic
dynamics self-averages and the martingale component does not contribute into the mean drift.
In order to verify how well our method approximates equations (25), we perform a numerical
experiment illustrated in figure 7. In this experiment we create two singularities far from the
boundaries in a sufficiently large domain, so that the interaction potential is well-approximated
by the fundamental solution (10b). (In a bounded domain, the particle interaction potential,
V2(xi − xj ), should be replaced by the Green’s function which also encodes interaction with
the boundary. In particular, this explains attraction of singularities to the boundary and the
corners of the domain.) We run the K–S solver and track locations of these singularities.
Finally, we compare them with locations of the particles evolving according to equation (25)
from the same initial data. A near-perfect match indicates that the scheme is very successful
in dealing with this kind of phenomena. Observe how the match improves as the number of
particles, N , increases. In fact, as can be guessed from the formulas similar to equation (20),
the numerical solution always retains stochastic effects on the order of O(1/

√
N). Only in the

limit as N → ∞ does it become truly deterministic.

4. Discussion

Our investigation of the K–S equations was motivated by the underlying stochastic particle
dynamics. A numerical method based on similar ideas has been recently presented by Haškovec
and Schmeiser [24]. The greatest advantage of the H-S method is that the singularities are
represented as deterministic particles rather than as a tight cluster of ‘elementary’ stochastic
particles. This, however, requires an explicit knowledge of evolution equations governing
the interaction of singularities (at the very least the knowledge of Green’s function in a given
domain) and is only applicable to the elliptic K–S model. Moreover, the H-S method requires a
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Figure 7. Interaction of singularities in the elliptic (α = 0) model. The particle density ρ(x) is
initialized with two delta-functions with masses 6.25 and 18.75. These singularities attract each
other and eventually merge; their locations are plotted as functions of time t . The thin black line
corresponds to the simulation of equation (25); the dark grey line — to simulation of the elliptic
K–S model; &t = 0.01, 4 · 105 particles are used; the light grey line corresponds to a simulation
with 2 · 104 particles. The computational domain is chosen sufficiently large so that the boundary
effects are negligible on the presented time scale.

direct simulation of an ensemble of interacting particles and thus its computational cost scales
as N2 with respect to the total number of particles. By combining the particle dynamics and
the PDE dynamics of the concentration field which mediates the particle interaction (the PIC
ideas) we are able to significantly reduce this computational cost and deal with a much larger
number of interacting particles. We can also treat both parabolic and elliptic models with
equal ease. The ultimate numerical method should combine ideas presented in this work, the
deterministic particles of the H-S method, and also high order conventional schemes in the
regions where the solution remains regular. Such a multi-model implementation remains a
subject for the future work.

Even though the non-uniqueness issue is well-known, the details of how the exit–entrance
conditions for the underlying diffusion process are related to the exchange of mass between the
singularity and the regular part are not yet well understood. From the modelling perspective,
the implication is that a particular numerical scheme provides a regularization of some sort
which affects the critical mass M∗

c

Another interesting class of stochastic particle models related to our studies of the K–
S equations arises in the context of the so-called self-gravitating Brownian particles, see
e.g., [13, 14, 36]. We suggest a model which fits into this class and bears an intrinsic relation
to the K–S model. Consider an ensemble of particles in d dimensions characterized by their
masses mn and evolving according to the stochastic differential equations

dX(n)
t = −χ

∂

∂X(n)

∑

k +=n

mkVd

(
X(n)

t X(k)
t

)
dt +

√
2µM/N0mn dW (n)

t . (26)

Here N0 is the initial number of particles and M =
∑

mn is their total mass. If initially
mn = M/N0, equation (26) is precisely (18). The interaction allows for particle collisions,
thus equation (26) is only valid until the first collision, at which point the colliding particles
coalesce into a single particle which acquires their combined mass. Dynamics is then restarted
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with the remaining particles. In the limit as N0 → ∞, whenever a particle accumulates an
O(1) mass, its diffusivity becomes zero, i.e., it obeys the deterministic equation (25) which
governs evolution of a point singularity in the K–S model. Therefore we conjecture that in a
proper hydrodynamic limit this system is equivalent to the elliptic K–S model. Investigation
of this system will be conducted elsewhere.
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