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Bayesian estimation begins with an assumed probability distribution on the parameter space Θ. With
this approach θ itself is a random variable and the observations X1, . . . , Xn are conditionally independent
given the value of θ. Consequently, in Bayesian statistics, (X, θ) is a random variable on the state space
Sn ×Θ.

The distribution of θ on Θ is called the prior distribution. We shall denote its density by π. Together,
the prior distribution and the parametric family {Pθ; θ ∈ Θ} determine the joint distribution of (X, θ).

1 Bayes Formula

For events A and B, recall that the conditional probability is

P (A|B)P (B) = P (A ∩B) = P (B|A)P (A),

or

P (A|B) =
P (B|A)P (A)

P (B)
.

Now, if we set
A = {θ = θ0} and B = {X = x},

then

P{θ = θ0|X = x} =
P{X = x|θ = θ0}P{θ = θ0}

P{X = x}
.

If the appropriate densities exist, then we can write Bayes formula as

fΘ|X(θ0|x) =

(
fX|Θ(x|θ0)∫

fX|Θ(x|θ̃)π(θ̃) dθ̃

)
π(θ0),

to compute the posterior density fΘ|X(θ0|x) as the product of the Bayes factor and the prior density.
If T is a sufficient statistic and fX|Θ(x|θ̃) = h(x)g(θ, T (x)), then the Bayes factor

fX|Θ(x|θ0)∫
fX|Θ(x|θ̃)fΘ(θ̃) dθ̃

=
h(x)g(θ, T (x))∫
h(x)g(θ̃, T (x)) dθ̃

=
g(θ, T (x))∫
g(θ̃, T (x)) dθ̃

is a function of T .

Example 1 (Normal observations and normal prior). Suppose that
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• θ is N(θ0, 1/λ), and

• that given θ, X consists of n conditionally independent N(θ, 1) random variables.

Then the prior density is fΘ(θ) =
√

λ
2π exp(−λ

2 (θ − θ0)2), and

fX|Θ(x|θ) = (2π)−n/2 exp(−1
2

n∑
i=1

(xi − θ)2)

= (2π)−n/2 exp(−n

2
(θ − x̄)2 − 1

2

n∑
i=1

(xi − x̄)2).

The posterior density is proportional to

k(x) exp(−1
2
(n(θ − x̄)2 + λ(θ − θ0)2))

= k̃(x) exp(−n + λ

2
(θ − θ̃(x))2).

where
θ̃(x) =

λθ0 + nx̄

λ + n
.

Thus, the posterior distribution is
N(θ1(x), 1/(λ + n)).

Note that it is a function of the sufficient statistics T (x) = x1 + · · · + xn. If n is small, then θ1(x) is
near θ0. If n is large, θ1(x) is near x̄.

2 Bayes Action

Recall that given a loss function L and an estimator d the risk function R : Θ×D → R is the expected loss
for that decision.

R(θ, d) = EθL(θ, d(X))

and the mean risk, or Bayes risk,

r(π, d) =
∫

Θ

R(θ, d)π(θ) dθ =
∫

Θ

∫
Rn

L(θ, d(x))fX(x|θ)π(θ) dxdθ.

The decision function that minimizes risk is called the Bayes action.

If the loss function is L1(θ, a) = |θ − a|, then the posterior median minimizes risk and thus the Bayes
action θ̂1(x) satisfies

1
2

=
∫ θ̂1(x)

−∞
fΘ|X(θ|x) dθ.

If the loss function is L2(θ, a) = (θ − a)2, then the posterior mean minimizes risk and thus the Bayes
action

θ̂2(x) = E[θ|X = x] =
∫

θfΘ|X(θ|x) dθ.

For the example of a normal prior and normal observations, θ̂1(x) = θ̂2(x) = θ̃(x).
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Figure 1: Beta posterior distribution with t = 0, 1, · · · , 10 successes in 10 Bernoulli trials based on a uniform
prior

Example 2. Let the prior distribution π on θ be a beta distribution with parameters α and β and consider
Bernoulli observations X1, . . . , Xn with parameter θ. T (X) = X1 + · · · + Xn is a sufficient statistic. The
posterior distribution

fΘ|X(θ|x) ∝ L(θ|x)π(θ) = θT (x)(1− θ)n−T (x) Γ(α + β)
Γ(α)Γ(β)

θα−1(1− θ)β−1, 0 ≤ θ ≤ 1.

Thus,
fΘ|X(θ|x) ∝ θT (x)+α−1(1− θ)n−T (x)+β−1 0 ≤ θ ≤ 1.

and the posterior distribution is Beta(T (x) + α, n − T (x) + β). If we want to estimate θ using a quadratic
risk function, then

θ̂(x) = E[θ|X = x] =
T (x) + α

n + α + β
.

The uniform distribution on [0, 1] has a Beta(1, 1) distribution. In this case

θ̂(x) =
T (x) + 1

n + 2
.

The posterior densities are graph using R in Figure 1 using

> curve(dbeta(x,1,11),0,1)
> for (i in 2:11){curve(dbeta(x,i,12-i),0,1,add=TRUE)}
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