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Bayesian estimation begins with an assumed probability distribution on the parameter space ©. With
this approach 6 itself is a random variable and the observations X1, ..., X, are conditionally independent
given the value of 6. Consequently, in Bayesian statistics, (X,6) is a random variable on the state space
S™ x ©.

The distribution of 6 on © is called the prior distribution. We shall denote its density by 7. Together,
the prior distribution and the parametric family {Py;6 € O} determine the joint distribution of (X, 0).

1 Bayes Formula

For events A and B, recall that the conditional probability is

P(A|B)P(B) = P(AN B) = P(B|A)P(A),

P(AIB) = 13(3;1;1)3(/1)

Now, if we set
A={0=6y} and B={X =x},

then

P{X =x}

If the appropriate densities exist, then we can write Bayes formula as
fx1e(x00
xjo(x|fo) m(00),
ffX\@(X|'9)7T(9) do

to compute the posterior density fg|x (fo|z) as the product of the Bayes factor and the prior density.
If T is a sufficient statistic and fX|@(x|§) = h(x)g(0,T(x)), then the Bayes factor

P{0=0,|X =x} =

foix (Bo]x) = (

J"‘X\(-)(NXWO)~ L h(X)g(NevT(X)) _ 9(~9’T(X)) ~
[ fxje(x10)fe(0) dd  [h(x)g(0,T(x)) d0  [g(0,T(x)) df

is a function of T.

Example 1 (Normal observations and normal prior). Suppose that



e 0is N(6p,1/)), and

e that given 0, X consists of n conditionally independent N(0,1) random wvariables.

Then the prior density is fo(0) = /3 exp(—5 (0 — 60)?), and

Z(xi —0)?)

= @0 Pep(- 50— 7P - 5 3w - 1))

i=1

N |

fxie(xl0) = (2m)""/%exp(—

The posterior density is proportional to

<) exp(— 5 (1(0 = 77 + A0 — 00))

= Fx) exp(—= "2 0 - 06)?)
where Ao + nx
0 =

Thus, the posterior distribution is

N(61(x),1/(A +n)).
Note that it is a function of the sufficient statistics T(x) = x1 + -+ 4+ xp. If n is small, then 6(x) is
near 6. If n is large, 61(x) is near T.

2 Bayes Action

Recall that given a loss function £ and an estimator d the risk function R : © x D — R is the expected loss

for that decision.
R(0,d) = EgL(0,d(X))

and the mean risk, or Bayes risk,
r(r,d) = / R(0,d)n(0) db — / £(0, d(x)) fx (x]0)x(6) dxdo.
(S] e JR"®

The decision function that minimizes risk is called the Bayes action.

If the loss function is £1(0,a) = |0 — al, then the posterior median minimizes risk and thus the Bayes
action 0 (x) satisfies
1 6, (%)
5 =/ f@\X(g\x) do.

If the loss function is £3(f,a) = (6 — a)?, then the posterior mean minimizes risk and thus the Bayes

action

0a(x) = EIO1X = x| = [ 0apx(61) db.

For the example of a normal prior and normal observations, 6 (x) = 5(x) = 6(x).



Figure 1: Beta posterior distribution with ¢ = 0,1, --- , 10 successes in 10 Bernoulli trials based on a uniform
prior

Example 2. Let the prior distribution m on 6 be a beta distribution with parameters a and (3 and consider
Bernoulli observations Xy, ..., X, with parameter 0. T(X) = X1 + --- + X,, is a sufficient statistic. The
posterior distribution

foix (0]x) < L(O]x)m(0) = 679 (1 — 9)"-T<X>F(°‘+(?)aa-l(1 —0)P7 0<h<1.

Thus,
foix (0]x) o 9TCIFa=1(1 — g)n=TCIT=1 g <9 < 1.

and the posterior distribution is Beta(T(x) + a,n — T(x) + 3). If we want to estimate 6 using a quadratic
risk function, then

T(x)+«

n+a+g

The uniform distribution on [0,1] has a Beta(1,1) distribution. In this case

0(x) = E[9|X = x| =

The posterior densities are graph using R in Figure 1 using

> curve(dbeta(x,1,11),0,1)
> for (i in 2:11){curve(dbeta(x,i,12-i),0,1,add=TRUE)}



