Composite Hypotheses

March 25-27, 2008

For a **composite hypothesis**, the parameter space Θ is divided into two disjoint regions, Θ_0 and Θ_1 . The test is written

$$H_0: \theta \in \Theta_0$$
 versus $H_1: \theta \in \Theta_1$

with H_0 is called the null hypothesis and H_1 the alternative hypothesis. Consequently, the action space A has two points 0 and 1 and the decision or **test function**

$$d: \text{data} \rightarrow \{0, 1\}.$$

Type I and type II errors have the same meaning for a composite hypotheses as it does with a simple hypothesis.

1 Power

Power is now a function

$$\pi_d(\theta) = P_\theta\{d(X) = 1\}.$$

that gives the probability of rejecting the null hypothesis for a given value of the parameter. Consequently, the ideal test function has

 $\pi_d(\theta) = 0$ for all $\theta \in \Theta_0$ and $\pi_d(\theta) = 1$ for all $\theta \in \Theta_1$

and the test function yields the correct decision with probability 1.

In reality, incorrect decisions are made. For $\theta \in \Theta_0$,

 $\pi_d(\theta)$ is the probability of making a type I error

and for $\theta \in \Theta_1$,

 $1 - \pi_d(\theta)$ is the probability of making a type II error.

The goal is to make the chance for error small. The traditional method is the same as that employed in the Neyman-Pearson lemma. Fix a **level** α , defined to be

$$\alpha = \sup\{\pi_d(\theta); \theta \in \Theta_0\}$$

and look for a decision function that make the power function large for $\theta \in \Theta_1$

Example 1. For X_1, X_2, \ldots, X_n independent $U(0, \theta)$ random variables, $\theta \in \Theta \in [0, \infty)$. Take

$$H_0: \theta_L \leq \theta \leq \theta_R$$
 versus $H_1: \theta < \theta_L$ or $\theta > \theta_R$.

We will try to base a test based on the sufficient statistic $X_{(n)} = \max_{1 \le i \le n} X_i$ and reject H_0 if $X_{(n)} > \theta_R$ and too much smaller that θ_L , say $\tilde{\theta}$. Then, the power function

$$\pi_d(\theta) = P_\theta\{X_{(n)} \le \theta\} + P_\theta\{X_{(n)} \ge \theta_R\}$$

We compute the power function in three cases. Case 1. $\theta \leq \tilde{\theta}$.

$$P_{\theta}\{X_{(n)} \leq \tilde{\theta}\} = 1 \text{ and } P_{\theta}\{X_{(n)} \geq \theta_R\} = 0$$

and therefore $\pi_d(\theta) = 1$.

Case 2. $\tilde{\theta} < \theta \leq \theta_R$.

$$P_{\theta}\{X_{(n)} \leq \tilde{\theta}\} = \left(\frac{\tilde{\theta}}{\theta}\right)^n \text{ and } P_{\theta}\{X_{(n)} \geq \theta_R\} = 0$$

and therefore $\pi_d(\theta) = (\tilde{\theta}/\theta)^n$.

Case 3. $\theta > \theta_R$.

$$P_{\theta}\{X_{(n)} \leq \tilde{\theta}\} = \left(\frac{\tilde{\theta}}{\theta}\right)^n \text{ and } P_{\theta}\{X_{(n)} \geq \theta_R\} = 1 - \left(\frac{\theta_R}{\theta}\right)^n$$

and therefore $\pi_d(\theta) = (\tilde{\theta}/\theta)^n + 1 - (\theta_R/\theta)^n$.

The size of the test

$$\alpha = \sup\left\{\left(\frac{\tilde{\theta}}{\theta}\right)^n; \theta_L \le \theta \le \theta_R\right\} = \left(\frac{\tilde{\theta}}{\theta_L}\right)^n.$$

To achieve this level, choose $\tilde{\theta} = \theta_L \sqrt[n]{\alpha}$.

Example 2. Let X_1, X_2, \ldots, X_n be independent $N(\mu, \sigma^2)$ random variables with σ^2 and μ unknown. For the composite hypothesis for the **one-sided test**

$$H_0: \mu \le \mu_0$$
 versus $H_1: \mu > \mu_0$

We use the test statistic from the likelihood ratio test and reject H_0 if \bar{X} is too large. The power function

$$\pi_d(\mu) = P_\theta\{\bar{X} \ge k(\mu_0)\}.$$

To obtain level α , we want $\alpha = \pi_d(\mu_0)$ then

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = z_\alpha.$$

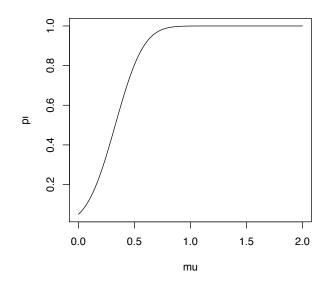


Figure 1: Power function for the one-sided test above

where $\Phi(z_{\alpha}) = 1 - \alpha$ and Φ is the distribution function for the standard normal, thus $k(\mu_0) = \mu_0 + (\sigma/\sqrt{n})z_{\alpha}$. The power function for this test

$$\pi_d(\mu) = P_\mu \{ \bar{X} \ge \frac{\sigma}{\sqrt{n}} z_\alpha + \mu_0 \} = P_\mu \{ \bar{X} - \mu \ge \frac{\sigma}{\sqrt{n}} z_\alpha - (\mu - \mu_0) \}$$
$$= P_\mu \left\{ \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \ge z_\alpha - \frac{\mu - \mu_0}{\sigma/\sqrt{n}} \right\} = 1 - \Phi \left(z_\alpha - \frac{\mu - \mu_0}{\sigma/\sqrt{n}} \right)$$

We plot the power function with $\mu_0 = 0$, $\sigma = 1$, and n = 25,

- > zalpha=qnorm(.95)
- > mu=(0:200)/100
- > z=zalpha-5*mu
- > pi=1-pnorm(z)
- > plot(mu,pi,type="1")

For a two-sided test

$$H_0: \mu = \mu_0$$
 versus $H_1: \mu \neq \mu_0.$

We reject H_0 if $|\bar{X} - \mu_0|$ is too large. Again, to obtain level α ,

$$|Z| = \left|\frac{X - \mu_0}{\sigma/\sqrt{n}}\right| = z_{\alpha/2}.$$

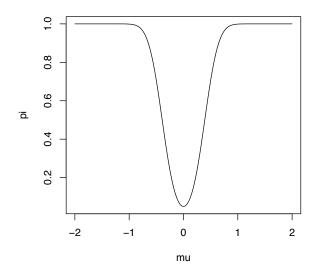


Figure 2: Power function for the two-sided test above

The power function for the test

$$\pi_{d}(\mu) = 1 - P_{\mu} \left\{ -z_{\alpha/2} \le \frac{\bar{X} - \mu_{0}}{\sigma/\sqrt{n}} \le z_{\alpha/2} \right\} = 1 - P_{\mu} \left\{ -z_{\alpha/2} - \frac{\mu - \mu_{0}}{\sigma/\sqrt{n}} \le \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \le z_{\alpha/2} - \frac{\mu - \mu_{0}}{\sigma/\sqrt{n}} \right\}$$
$$= 1 - \Phi \left(z_{\alpha/2} - \frac{\mu - \mu_{0}}{\sigma/\sqrt{n}} \right) + \Phi \left(-z_{\alpha/2} - \frac{\mu - \mu_{0}}{\sigma/\sqrt{n}} \right)$$

- > zalpha = qnorm(.975)
- > mu=(-200:200)/100
- > pi = 1 pnorm(zalpha-5*mu)+pnorm(-zalpha-5*mu)
- > plot(mu,pi,type="l")

2 The *p*-value

The report of *reject* the null hypothesis does not describe the strength of the evidence because it fails to give us the sense of whether or not a small change in the values in the data could have resulted in a different decision. Consequently, the common method is not to choose, in advance, a level α of the test and then report "reject" or "fail to reject", but rather to report the value of the test statistic and to give all the values for α that would lead to the rejection of H_0 .

For example, if the test is based on having a test statistic S(X) exceed a level k, i.e., we have decision

function

$$d_k(X) = 1$$
 if and only if $S(X) > k$.

and if the value $S(X) = k_0$ is observed, then the *p*-value equals

$$\sup\{\pi_{d_t}(\theta); \theta \in \Theta_0\} = \sup\{P_\theta\{S(X) \ge k_0\}; \theta \in \Theta_0\}.$$

In the one-sided test above, if $\bar{X} = 1$, then

$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} = \frac{1 - 0}{1/\sqrt{25}} = 5.$$

> pvalue = 1 - pnorm(5)
> pvalue
[1] 2.866516e-07

In this case, the *p*-value is 2.87×10^{-7} .

3 Confidence Sets

Choose a number γ between 0 and 1. From data X, suppose that we compute two statistIcs L(X) and R(X) so that irrespective of the value of the parameter,

$$P_{\theta}\{L(X) < \theta < R(X)\} \ge \gamma$$

If $\ell = L(X)$ and r = R(X) are the observed values based on the data X, then the interval (ℓ, r) is called a **confidence interval** for θ with **confidence coefficient** γ . This notion extends the idea of a point estimator $\hat{\theta}$ by adding a notion concerning how closely we can estimate θ .

We will show how an α test for the hypothesis

$$H_0: \theta = \theta_0$$
 versus $H_1: \theta \neq \theta_0$

generates a $\gamma = 1 - \alpha$ confidence interval.

Let d denote the decision function for this test. Given the data X, let $\omega(X)$ denote those parameter values for which the test fails to reject this hypothesis. Thus,

$$\theta_0 \in \omega(X)$$
 if and only if $d(X) = 0$.

and

$$P_{\theta_0}\{\theta_0 \in \omega(X)\} = P_{\theta_0}\{d(X) = 0\} = 1 - P_{\theta_0}\{d(X) = 1\} = 1 - \alpha = \gamma$$

Now let L(X) and R(X) be the end points of the interval $\omega(X)$.

Example 3. In the example above, for the two-sided test based on normal data

$$H_0: \mu = \mu_0 \quad \text{versus} \quad H_1: \mu \neq \mu_0$$
$$d(X) = 0 \text{ if and only if } \left| \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \right| < z_{\alpha/2}.$$
$$\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \leq \mu_0 \leq \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \bar{X} \quad \text{and} \quad \omega(X) = \left(\bar{X} - \frac{\sigma}{\sqrt{n}} z_{\alpha/2}, \bar{X} + \frac{\sigma}{\sqrt{n}} z_{\alpha/2} \right).$$