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For a composite hypothesis, the parameter space Θ is divided into two disjoint regions, Θ0 and Θ1.
The test is written

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

with H0 is called the null hypothesis and H1 the alternative hypothesis. Consequently, the action space A
has two points 0 and 1 and the decision or test function

d : data → {0, 1}.

Type I and type II errors have the same meaning for a composite hypotheses as it does with a simple
hypothesis.

1 Power

Power is now a function
πd(θ) = Pθ{d(X) = 1}.

that gives the probability of rejecting the null hypothesis for a given value of the parameter. Consequently,
the ideal test function has

πd(θ) = 0 for all θ ∈ Θ0 and πd(θ) = 1 for all θ ∈ Θ1

and the test function yields the correct decision with probability 1.
In reality, incorrect decisions are made. For θ ∈ Θ0,

πd(θ) is the probability of making a type I error

and for θ ∈ Θ1,
1− πd(θ) is the probability of making a type II error.

The goal is to make the chance for error small. The traditional method is the same as that employed in
the Neyman-Pearson lemma. Fix a level α, defined to be

α = sup{πd(θ); θ ∈ Θ0}

and look for a decision function that make the power function large for θ ∈ Θ1
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Example 1. For X1, X2, . . . , Xn independent U(0, θ) random variables, θ ∈ Θ ∈ [0,∞). Take

H0 : θL ≤ θ ≤ θR versus H1 : θ < θL or θ > θR.

We will try to base a test based on the sufficient statistic X(n) = max1≤i≤n Xi and reject H0 if X(n) > θR

and too much smaller that θL, say θ̃. Then, the power function

πd(θ) = Pθ{X(n) ≤ θ̃}+ Pθ{X(n) ≥ θR}

We compute the power function in three cases.
Case 1. θ ≤ θ̃.

Pθ{X(n) ≤ θ̃} = 1 and Pθ{X(n) ≥ θR} = 0

and therefore πd(θ) = 1.

Case 2. θ̃ < θ ≤ θR.

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n

and Pθ{X(n) ≥ θR} = 0

and therefore πd(θ) = (θ̃/θ)n.

Case 3. θ > θR.

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n

and Pθ{X(n) ≥ θR} = 1−
(

θR

θ

)n

and therefore πd(θ) = (θ̃/θ)n + 1− (θR/θ)n.

The size of the test

α = sup

{(
θ̃

θ

)n

; θL ≤ θ ≤ θR

}
=

(
θ̃

θL

)n

.

To achieve this level, choose θ̃ = θL
n
√

α.

Example 2. Let X1, X2, . . . , Xn be independent N(µ, σ2) random variables with σ2 and µ unknown. For
the composite hypothesis for the one-sided test

H0 : µ ≤ µ0 versus H1 : µ > µ0.

We use the test statistic from the likelihood ratio test and reject H0 if X̄ is too large. The power function

πd(µ) = Pθ{X̄ ≥ k(µ0)}.

To obtain level α, we want α = πd(µ0) then

Z =
X̄ − µ0

σ/
√

n
= zα.
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Figure 1: Power function for the one-sided test above

where Φ(zα) = 1−α and Φ is the distribution function for the standard normal, thus k(µ0) = µ0+(σ/
√

n)zα.
The power function for this test

πd(µ) = Pµ{X̄ ≥ σ√
n

zα + µ0} = Pµ{X̄ − µ ≥ σ√
n

zα − (µ− µ0)}

= Pµ

{
X̄ − µ

σ/
√

n
≥ zα −

µ− µ0

σ/
√

n

}
= 1− Φ

(
zα −

µ− µ0

σ/
√

n

)
We plot the power function with µ0 = 0, σ = 1, and n = 25,

> zalpha=qnorm(.95)
> mu=(0:200)/100
> z=zalpha-5*mu
> pi=1-pnorm(z)
> plot(mu,pi,type="l")

For a two-sided test
H0 : µ = µ0 versus H1 : µ 6= µ0.

We reject H0 if |X̄ − µ0| is too large. Again, to obtain level α,

|Z| =
∣∣∣X̄ − µ0

σ/
√

n

∣∣∣ = zα/2.
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Figure 2: Power function for the two-sided test above

The power function for the test

πd(µ) = 1− Pµ

{
−zα/2 ≤

X̄ − µ0

σ/
√

n
≤ zα/2

}
= 1− Pµ

{
−zα/2 −

µ− µ0

σ/
√

n
≤ X̄ − µ

σ/
√

n
≤ zα/2 −

µ− µ0

σ/
√

n

}
= 1− Φ

(
zα/2 −

µ− µ0

σ/
√

n

)
+ Φ

(
−zα/2 −

µ− µ0

σ/
√

n

)
> zalpha = qnorm(.975)
> mu=(-200:200)/100
> pi = 1 - pnorm(zalpha-5*mu)+pnorm(-zalpha-5*mu)
> plot(mu,pi,type="l")

2 The p-value

The report of reject the null hypothesis does not describe the strength of the evidence because it fails to give
us the sense of whether or not a small change in the values in the data could have resulted in a different
decision. Consequently, the common method is not to choose, in advance, a level α of the test and then
report “reject” or “fail to reject”, but rather to report the value of the test statistic and to give all the values
for α that would lead to the rejection of H0.

For example, if the test is based on having a test statistic S(X) exceed a level k, i.e., we have decision
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function
dk(X) = 1 if and only if S(X) ≥ k.

and if the value S(X) = k0 is observed, then the p-value equals

sup{πdt(θ); θ ∈ Θ0} = sup{Pθ{S(X) ≥ k0}; θ ∈ Θ0}.

In the one-sided test above, if X̄ = 1, then

Z =
X̄ − µ0

σ/
√

n
=

1− 0
1/
√

25
= 5.

> pvalue = 1 - pnorm(5)
> pvalue
[1] 2.866516e-07

In this case, the p-value is 2.87× 10−7.

3 Confidence Sets

Choose a number γ between 0 and 1. From data X, suppose that we compute two statistIcs L(X) and R(X)
so that irrespective of the value of the parameter,

Pθ{L(X) < θ < R(X)} ≥ γ.

If ` = L(X) and r = R(X) are the observed values based on the data X, then the interval (`, r) is called a
confidence interval for θ with confidence coefficient γ. This notion extends the idea of a point estimator
θ̂ by adding a notion concerning how closely we can estimate θ.

We will show how an α test for the hypothesis

H0 : θ = θ0 versus H1 : θ 6= θ0

generates a γ = 1− α confidence interval.
Let d denote the decision function for this test. Given the data X, let ω(X) denote those parameter

values for which the test fails to reject this hypothesis. Thus,

θ0 ∈ ω(X) if and only if d(X) = 0.

and
Pθ0{θ0 ∈ ω(X)} = Pθ0{d(X) = 0} = 1− Pθ0{d(X) = 1} = 1− α = γ.

Now let L(X) and R(X) be the end points of the interval ω(X).

Example 3. In the example above, for the two-sided test based on normal data

H0 : µ = µ0 versus H1 : µ 6= µ0

d(X) = 0 if and only if
∣∣∣X̄ − µ0

σ/
√

n

∣∣∣ < zα/2.

X̄ − σ√
n

zα/2 ≤ µ0 ≤ X̄ +
σ√
n

zα/2X̄ and ω(X) =
(

X̄ − σ√
n

zα/2, X̄ +
σ√
n

zα/2

)
.
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