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Abstract

In this paper, we establish the cutoff phenomena for the discrete time infinite alleles Moran model. If
M is the population size and p is the mutation rate, we find a cutoff time of log(Mp)/u generations. The
stationary distribution for this process in the case of sampling without replacement is the Ewens sampling
formula. We show that the bound for the total variation distance from the generation t distribution to
the Ewens sampling formula is well approximated by one of the extreme value distributions, namely, a
standard Gumbel distribution. Beginning with the card shuffling examples of Aldous and Diaconis and
extending the ideas of Donnelly and Rodrigues for the two allele model, this model adds to the list of
Markov chains that displays the cutoff phenomenon. Because of the broad use of infinite alleles models,
this cutoff sets the time scale of applicability for statistical tests based on the Ewens sampling formula
and other tests of neutrality in a number of population genetic studies.
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1. Introduction. Open a box of playing cards and inspect them after each riffle shuffle. Bayer and
Diaconis (1992) prove that features of the original order of the cards can typically be detected after four shuf-
fles, but essentially all evidence of the original order of cards disappears after seven shuffles. Consequently,
strategies for a game using this deck should depend on the number of times it is shuffled.

This provides one of several examples of what is known as the cutoff phenomenon for recurrent Markov
chains. This phenomenon has been seen in a variety of circumstances, e.g., card shuffling, (Aldous and
Diaconis, 1986, 1987, Pemantle, 1989), the Ehrenfest urn model, (Aldous, 1983, and Diaconis and Shahsha-
hani, 1987) random walks on matrix groups, (Diaconis, 1986) the Bernoulli-Laplace diffusion, (Diaconis and
Shahshahani, 1987) and the two allele Moran model (Donnelly and Rodrigues, 2000). (See also Rosenthal,
1995, Diaconis, 1996, or Saloff-Coste, 1997.)

The type of analysis applied to genetic data fundamentally depends on understanding if and when a cutoff
phenomenon occurs for an appropriate genetic model. If the population has existed for less than the cutoff
time, then aspects of the genotypes of the founding population should be visible and any mathematical
analysis ought to employ strategies that use this information. On the other hand, if the population has
persisted for more generations than the cutoff time, analysis of the genetic data should largely be based on
a stationary distribution of a Markov process that models the genetic evolution.

In this manuscript, we establish that the cutoff phenomena holds for one class of the most frequenly used
stochastic models in population genetics, neutral infinite alleles models. The main result is a back of the
envelop calculation which provides a criterion (26) for the applicability of statistical tests based on a neutral
equilibrium. In a separate manuscript, we apply this to investigate the evolution of patrilines in Indonesian
communities. (See Lansing et. al., 2007.)



We begin with a time homogeneous Markov chain X on a countable state space S. Probabilities of events
are determined from an initial probability measure vy and from the transition matrix

T(x,y) = P{Xe11 =y| Xt =2} = P{Xe11 =y| Xt =2, X1 = x¢-1,..., X0 = To}.

Multistep transition probabilities are determined via matrix multiplication T°(z,y) = P{ X+, = y| X = z}.
Thus, for example, if we set v,(A) = P{X; € A}, then

vips{yt = (W T°){y} = Z vi{a}T*(z,y).

zeSs

In the case in which every state is accessible from every other state (i. e., for all  and y, there exists
t > 0 so that T%(z,y) > 0) then the Markov chain is called irreducible. The period of a state x is defined
as l(x) = ged{t > 0;T"(z,z) > 0} (ged(P) = 0). If ¢(z) = 1, x is called aperiodic. Using the notation
P, to denote probability conditioned on the event {X, = x}, we say that a state z is recurrent whenever
P.{X; =x for some t > 0} = 1 and transient otherwise. If the time to return to x has finite mean ., then
the state is called positive recurrent. Otherwise, a recurrent state is called null recurrent. If S is finite, then
irreducibility is a sufficient condition for positive recurrence.

For an irreducible Markov chain, every state has the same period and every state in the chain is either
positive recurrent, null recurrent, or transient. In the aperiodic case, the asymptotic behavior is described
by

lim T*(x,y). (1)
t—oo

For an irreducible chain in which the states are either transient or null recurrent, this limit is 0. In the
positive recurrent case, the limit is 1/, > 0. The remarkable connection is that this limit is also 7{y}, the
unique stationary probability measure. In other words, 7T = 7, 7 is a left eigenmeasure with eigenvalue 1.

Call a Markov chain ergodic if it is time homogeneous, irreducible, aperiodic and positive recurrent. From
a statistical point of view, if we evaluate an ergodic Markov chain X; for a large value of ¢, we must know
the rate of convergence in (1) if we want to say that we are sampling from a probability measure near to 7.
The classical method is to determine a geometric rate of convergence based on an estimation of the second
leading eigenvalue.

Seeking an improvement, Aldous and Diaconis (1986) begin by measuring the distance between two
probability measures v and r using the total variation norm,

lv = 2llry = sup{|[v(B) — v(B)[; B C S}. (2)
The supremum is achieved on both the sets {y; v{y} > v{y}} and {y; 7{y} > v{y}}. Consequently,
v = ollrv =Y Ay} = H{uD Ly vy >o (v (3)
yeS
Probabilistic techniques are used to obtain an upper bound through the use of coupling.

Definition 1. Let v and U be two probability measures. A coupling of v and v is a pair of random variables
¢ and ¢ defined on a common probability space such that the marginal distribution of  is v and the marginal
distribution of C is U.

Theorem 2. Let v and U be probability measures on a countable state space and let C(v,U) denote the
collection of couplings of v and v. Then,

lv = ollrv = inf{P{¢ # (}; (P.¢, ) € Cv, )} (4)



Proof. See Lindvall, 1992, page 12, where it is called the basic coupling inequality or Levin, Peres, and
Wilmer, 2006, Proposition 3.11. O

Aldous and Diaconis introduce a second method to bound this distance using the concept of strong
stationary times. In this context, we view the Markov chain evolving in association with an increasing
family of o-algebras {F;;¢t > 0} which is to be regarded as the totality of information available at time
step t. In particular, X must be adapted, i.e., for each ¢ > 0 and A C S, the event {X, € A} € 7. In
words, questions concerning the state of the Markov chain at time ¢ can be answered using the information
contained in F;.

In the following development, we shall assume that X is an ergodic F;-adapted Markov chain on a
countable state space S and that X has unique stationary probability measure 7.

Definition 3. A random time 7 is called a strong stationary time provided that

1. For allt > 0, {1 < t} € F;, i.e., whether or not the strong stationary time has occurred can be
determined from the information available at time t,

2. X, has distribution w, and
3. X; and T are independent.

Properties 2 and 3 imply that P,{Xs =y, 7 = s} = P,{X,; =y, 7 = s} = n{y} P.{7 = s}. Now, sum on
s <t to obtain

t t

PiXi=ym<ty =) P{Xi=y,7=s}=) PAXi=ylr=s}P{r=s}=n{y}P{r <t}  (5)
s=0 s=0

because

PAX; =y|T = s} Z PAXi=y,Xs=z|r=s} = Z PAXs =zt =s}P{X, =y|X; =2,7 = s}

res xzes
= Z Px{X‘r = LL'|T = S}Pz{Xt = y|Xs = x} = Z ﬂ—{x}Tt_s(xvy) = W{y}
zeS €S

Their first example of a strong stationary time is described in the “top to random shuffle”. Let X be a
Markov chain whose state space is the set of permutation on M letters, i.e., the order of the cards in a deck
having a total of M cards. We write X, (k) for the card in the k-th position after ¢ shuffles. The transitions
are to take the top card and place it at a random position uniformly distributed in the deck. Note that the
uniform probability measure on the M! permutations is a stationary measure. Define

T=inf{t > 0; X;(1) = Xo(M)} + 1,

the first shuffle after the original bottom card has moved to the top.

Proposition 4. 7 is a strong stationary time.

Proof. We show that at the time in which we have k cards under the original bottom card (X;(M — k) =
Xo(M)), then all k! orderings of these k cards are equally likely.



To establish a proof by induction on k, note that the statement above is obvious in the case k = 1. For
the case k = j, we assume that all j! arrangements of the cards under X,(M) are equally likely. When an
additional card is placed under Xo(M), then each of the j + 1 available positions are equally likely to be
selected, and thus all (j 4+ 1)! arrangements of the cards under Xo(M) are equally likely. Consequently, the
first time that the original bottom card is placed into the deck, then, independent of the value of 7, all M!
orderings are equally likely. O

To show the value of strong stationary times, we recall the following.

Definition 5. The separation distance

T (z,y)
m{y}

Proposition 6. Let 7 be a strong stationary time for X, then

st:sup{l— ;m,yES}.

sp < rgleachm{T >t}

Proof. For any x,y € S, use equation (5) to see that
_Tt(xay) 1_P:1:{Xt:y}<1_P:1:{Xt:y77—§t}

ryy Ty w{y}
) Poir <t}

1

1 =1—-PAr <t} = P.A{r >t}
= (r<ty=Pfr>1)
O
Theorem 7. Fort=0,1,..., write ;(A) = P{X; € A}, then ||v; — 7||7rv < st.
Proof. Using identity (3), we have that
- = - I = 1— M I
e —llry = > (@ {y} — vl{yD Lyimyys vty = O ™y} g} ) e
yeS yeS Y
T'(z,y)
= Y m{y}>_ wis} (1 - ) Iintyy>udu})
yeSs €S ﬂ—{y}
< Z m{y} Z vo{x}s: = s¢.
yeSs eSS
O

Now, we combine the proposition and the theorem.

Corollary 8. Let 7 be a strong stationary time for X, then

[lve — ||y < max Pp{T > t}.
zeS
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Figure 1: Reading from left to right, the plot of the bound given by the strong stationary time of the total
variation distance to the uniform distribution at time ¢, = shuffles/M for a deck of size M = 26,52,104,
and 208 based on 10,000 simulations of the stopping time 7.

The strong stopping time in Corollary 2 is independent of the intial ordering of cards, thus we have an
upper bound on the total variation distance of cards in the deck after ¢ shuffles and the uniform probability
measure. P.{7 > t} is simulated in Figure 1. Note that the horizontal axis is the number of shuffles
divided by the number of cards in the deck. The constant linear shift with a doubling of the size of the
deck indicates an M log M dependence on the distribution. Diaconis and Aldous (1986) show that for ¢ > 0,
P{r > M(logM +¢)} <e .

2. The Ewens Sampling Formula. For more that three decades, the Fwens sampling formula has
been a major cornerstone in tests of a neutral assumption of evolution. (See Ewens, 1972, Karlin and
McGregor, 1972, Ewens, 2000, Durrett, 2002, Tavaré, 2004, Griffiths and Lessard, 2005.) This contribution
came soon after the realization through data obtained by electrophoretic methods of the high variability
of genetic types and Kimura’s (1968) introduction of his neutral theory of molecular evolution. (See also
Slatkin, 1994, 1996.) The advancement in the theory of population genetics in 1978 via Kingman’s paintbox
construction, in 1980 via Griffith’s lines of descent process, and in 1982 via Kingman’s coalescent led to a
variety of new perspectives on and extensions of the sampling formula.



The Ewens sampling formula applies to situations in which
e the sample size m is small compared to the constant haploid population size, M,
e each mutation gives rise to a novel haplotype (the infinite alleles model),

e cach mutation is selectively neutral, taking place from one generation to the next with probability pu,
and

e the population is in equilibrium.

(See Cannings, 1974 and Ethier and Kurtz, 1981.)

Most of our attention will be placed on the last of these four requirements. How long must the population
be in place before can we say that the configuration of the population is near equilibrium? The point of
view has been taken by a variety of authors, e.g., Griffiths (1979), Watterson (1984), Donnelly (1986), and
Donnelly and Tavaré, (1986) in their investigations of ages of alleles and lines of descent. The specific goal
here is to use the ideas developed in the introduction to determine a good bound on the total variation
distance between the time ¢ distribution of a sample and the Ewens sampling formula. Along the way, we
shall encounter a few of the the now classical results of the authors cited above.

The sampling formula gives the distribution of a sample taken from the assumed equilibrium frequency
distribution or configuration of the population. To be precise, let e; denote the configuration consisting of a
collection of i genetically indistinguishable individuals (called a haplotype) and let ¢; denote the number of
distinct haplotypes represented i times in the population. Then, the permissible configurations are those

c= Z c;e;, for which Z ic; = M.
i i
Letting b; denote the number of haplotypes represented i times in a sample of m individuals, we have
b= Z b;e;, for which Zibi =m
i i

as possible sampling configurations.
The Ewens sampling formula ESF(m, ) states that probability that the sample has configuration b is

o\" 1
-] —. 6
(5) & ®
The choice of 6 is generally approximately equal to M p.
One simple way to reproduce the Ewens sampling formula is via Hoppe’s (1984) urn model. To an urn
containing n colored balls, add balls to the urn one by one according to the following rule.

m!
9(9+1)---(9+m—1)H

%

e With probability 8/(0 4+ n), a ball having a new color is added to the urn.

e With probability n/(6 + n), a ball is chosen at random and returned to the urn. An additional ball of
the same color is also placed in the urn.



Then when the urn contains m balls, the configuration has an ESF(m,0) distribution. To construct
a proof by induction, fix a configuration b of m balls and consider the configurations of m — 1 balls that
could result in configuration b upon the addition of a ball. (See Durrett, 2002, Chapter 1, Section 3) Also,
note that if the balls have an ESF(m, ) distribution and a ball is removed at random, then the remaining
m — 1 balls have an ESF(m — 1,0) distribution, Consequently, a random sample of balls chosen from
configurations distributed according to the Ewens sampling formula itself has the Ewens sampling formula
as its distribution.

In a manner similar to Donnelly and Tavaré (1986) the results here are based on a discrete time infinite
alleles Moran model. Donnelly and Rodrigues (2000) took the ideas developed in the Introduction and
applied them to a continuous time two allele Moran model.

3. The New Alleles Process. The infinite alleles Moran model can be described as follows. Fill an
urn with M balls in a variety of colors (called old alleles) and consider the following Markov chain U. The
graphical representation of a realization of this process is given in Figure 2.

e Choose a ball at random to make the replacement. (the tails of the arrows)
e Choose a second ball without replacement to be removed from the population. (the heads of the arrows)

— With probability 1 — u, replace the removed ball with a ball identical to the first ball chosen.

— With probability u, replace the removed ball with a ball striped with a new color (called a new
allele). This is displayed by an X on the arrow in the graphical representation.

Because new colors continue to appear, U is not recurrent. CtU , the configuration of Uy, is also a Markov
chain. CY has a finite state space, is irreducible, aperiodic, and, thus, positive recurrent. As shown by Kelly
(1977 and 1979, Chapter 7), C{ has a unique stationary probability measure, 7, ,. As we shall see, this
distribution is ESF(M,0), 0 = (M — 1)u/(1 — p).

Let N; denote the number of striped balls at time t. Then, Ny = 0. In the graphical representation, the
position at the head of arrow inherits the type at the tail unless a mutation occurs. The changes in the
number of striped balls based on the two balls drawn in summarized in Table 1.

Table 1. Transitions in the Markov chain N.

reproduce, remove

mutate | S,S | S,U | U, S | UU
no 0 +1 | -1 0
yes 0 +1 0 +1

S - striped ball, U - unstriped ball

Consequently, N is a particular kind of Markov chain, a birth-death chain, with transition matrix

B (m) ifn=m+1,
Ty(m,n) =< 1—pn(m)—20dn(m) if n=m,
on(m) ifn=m—1.

In addition, if the urn has m striped balls, then
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Figure 2: The graphical representation of fourteen time steps of a realization of the urn model process U with
M = 10 and the evolution moving downward. Balls numbered 4, 5, 6, and 7, are striped at the beginning of
the time course displayed. The dark lines indicate balls having new alleles and the numbers on the left give
the state of the new allelles process V. The x shows a mutation that gives rise to a striped ball in column
3.

the choice ‘ has probability
5.9 R
S.U B (1 g = 5 )
U,S (1—37 ) -1 = MM Mo
Uu (1= 47) - (L= 5%9) = 5 5

Combine Table 1 and (7) to obtain

() = Frigrgy (m + (M = m = D). S (m) = g1 = ).

N is a discrete time two allele Moran model with mutations from the unstriped allele type to striped
allele type having probability © and no mutations permitted from striped alleles to unstriped alleles.

Theorem 9. Let F; be the o-algebra generated by the urn process random variables Uy, Uy, ..., Uy and define
T~ = inf{t > 0 : Ny = M}, the first time the urn consists entirely of striped balls. Then, Ty 1is a strong
stationary time.



Proof. The expression {7y < t} € F; merely states that by watching the urn process U up to time step ¢,
we can decide whether or not the urn has ever been filled solely with striped balls. Thus, property 1 in the
definition of a strong stationary time is satisfied.

The following claim will establish properties 2 and 3.

Claim. Whenever the urn has n striped balls, then the configuration of these balls has an ESF(n,0)
distribution, with 8 = (M — 1)u/(1 — p).

The claim certainly holds when n = 1.

Case 1. The number of striped balls decreases by 1.
In this case, a striped ball is removed at random and an unstriped ball is added. Thus, the distribution
of the remaining configuration of striped balls is ESF(n — 1,0).

Case 2. The number of striped balls increases by 1.
In this case, an unstriped ball is removed and a striped ball is added. The probability that the additional
striped ball has a new color resulting from a mutation,

n  M-n M—-n M-n—1 —
(- ¥+ M M) e (M = 1)
P{new striped color|striped ball added} = Mo 3 A(/[n) M= = MM ﬂl) )
N N

(M —1)p (M —1)p 6

n+(M-n—1u (1T—pwn+(M-Du n+6

Thus the type of ball added follows the rules for Hoppe’s urn and the configuration of striped balls has an
ESF(n+ 1,0) distribution.

Case 3. The number of striped balls remains constant.

If an unstriped ball is replaced with an unstriped ball, then the distribution of the configuration of striped
balls remains ESF(n,0).

If a striped ball is replaced by a striped ball, then, as in case 1, after the striped ball is removed, the urn
has configurations that follow an ESF(n — 1,0) distribution.

P{new striped color|striped ball removed and added}

n n—1 M—n n
(M'M—lJr 'M—1>“_ nn—1+M-n)y (M —1)p B 0
ool Monon nn—1+Mp—np) -1 -p)+M-1)p n—-1+6

Again the rules for Hoppe’s urn are satisfied and the configuration of striped balls has an ESF(n, ) distri-
bution.

Consequently, at time 77, independent of the value of 7, the configuration of the M striped balls has
the ESF(M,0). O

In addition, by Corollary 8, if we denote the distribution of configurations of the urn at time step ¢ by
v€, then
c c
[lvy — 7TM,HHTV < m"?XPn{TN >t} = Po{rn >t} (8)

Figure 3 displays the same basic behavior on convergence to stationarity for the infinite alleles Moran
model as was seen previously in the top to random card shuffle. The horizontal axis measures time in



0.7

0.6

0.5+

Pott>

0.4}

0.1

0 ! ! ! ! T
0 50 100 150 200 250 300 350 400

t,= steps/M

Figure 3: Reading from left to right, the plot Po{rn > tas} with time tp; = steps/M, measured in genera-
tions, for u = 0.025 and M = 100, 200, 400, 800, and 1600 based on 10,000 simulations of the stopping time
TN -

generations. One generation is the number, M, of time steps in which each individual, on average, reproduces
once.

We would like to obtain an analytical expression that will yield the curves in Figure 3. Because the
structure of eigenvalues, eigenmeasures, and eigenfunction is difficult to determine for Ty, we will have
difficulty in accomplishing this task if we confine ourselves to an analysis of this transition matrix. Following
a strategy analagous to Donnelly and Rodrigues (2000), we examine a process dual to the new alleles process.

4. Lines of Descent. Now consider a realization of the entire genetic history of the process introduced
above. The dynamics describing the number of striped balls and the configuration of these balls takes a
forward in time approach. A backward in time dual process introduced by Griffiths (1980) is called the lines
of descent. To describe this process, begin a sample of size m from the present population and look back at
the balls in the urn ¢ time steps in the past. D; is defined to be the number of balls that are direct ancestors
which are identical to those in the present day sample.

The value of introducing the dual process is demonstrated by the following theorem.

10
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Figure 4: The graphical representation of fourteen time steps of the realization of the urn model process
U shown in Figure 2 with M = 10. Assuming 10 lines of descent in the present, the numbers on the right
give the state of D, the lines of descent process. The x shows a mutation that gives rise to a striped ball in
column 3 which, looking back in time, terminates a line of descent.

Theorem 10. Define 7p = min{t > 0: Dy = 0}. If Ngo =0 and Dy = M, then 7p and TN have the same
distribution.

Proof. Consider the probability space that consists of the graphical representations described above and
illustrated in Figures 2 and 4. That is, independently, for each integer t, choose a number from 1 to M at
random for the head of the arrow and choose a second number, without replacement, for the tail. On the
left side of the grid, place numbers, increasing moving downward, representing the time steps for the new
alleles process. On the right side, independent of the placement of the arrows, place 0 across from some
positive value, t, for the new alleles process and place numbers for the lines of descent process increasing
moving upward.

Consider tg time steps of the new alleles process and focus on realizations of the graphical representation
that have ¢y across from 0. We will prove the theorem by showing in these realizations 7 > t¢ if and only
if Tp > tp.

With No = 0 and Dy = M, if 7y > to, then, Ny, < M. Consequently, one of the original old alleles
survives from time 0 to time tg. Thus, at least one line of descent survives from ¢y time steps in the past.
In other words, Dy, > 0 and 7p > t.

On the other hand, if 7 < ¢, then Ny, = M. Thus, all of the old alleles have mutated and looking back
in time, none of the lines of descent remain for ¢y time steps. Consequently, D;, = 0 and 7p < ¢o. O

The next step is to compute P{D; = 0} = P{rp < t}. Then, by Corollary 8 and Theorem 10, we have
an upper bound for the desired total variation distance [|v; — 7§} ullv.

11



As we look back one time step, (upwards in Figure 4) the number of lines of descent can decrease by one
in one of two ways:

e A ball in the sample resulted from a mutation from the previous generation (indicated by x).
e Two balls in the sample are descended from one in the previous generation.

The changes in the number of lines of descent based on the two balls drawn in summarized in Table 2.

Table 2. Transitions in the Markov chain D.

parent, offspring

mutate || S,S | S,U | U, S | U U
no —1 0 0 0
yes -1 0 -1 0

S - sampled, U - unsampled

Thus, D is a pure-death chain with transition matrix

[ 1=dn(m) ifn=m,
Tp(m,n) = { dn(m) ifn=m-—1.
Returning to the probabilities in (7) and using Table 2, we find that
m m-—1 M-m m m
oom) = Fr =it M-t o= i (M mw)
m m(m—1+0)
= ——  (m-1)Q1- M—1y) = =77
ST (= D =)+ 01 = ) = = (9)

because M —1+0=(M —1)/(1 — p).
To determine the (right) eigenfunctions T f = Af, (See, for example, the appendix in Tavaré, 1984.)

Tp(m,m)f(m) +Tp(m,m—1)f(m —1) = Af(m), or dp(m)f(m—1)=(A=1+dp(m))f(m). (10)

Fix n, then
A =1—14dp(n) (11)

is an eigenvalue. If we set f™(72) = 1, then by iterating equation (10), we obtain

0 if m < n,
Fm) = { 1 L dfm=n (12)
Hj:ﬁ+1(b(ijéD(’;‘L) if m > n.

To determine the (left) eigenmeasures vTp = v,

v{n+ 1}Tp(n+1,n) + v{n}Tp(n,n) = Av{n}, or v{n+1}dp(n+1)=v{n}(A=1+6dp(n)). (13)

12



Note that Az = 1 — §p(f) is again an eigenvalue. If we set v {fi} = 1, then by iterating equation (13),

we obtain L sn(ee)
n— D . ~
X Hk n S —snm LN <,

vi{n} = if n =7, (14)
O if n>n.
Let €" be the probability measure that puts mass 1 at n and zero mass elsewhere. Then, we can

write v = """l {n}e" 4 €. Consequently, by following the usual row reduction operations for a lower
triangular matrix with 1’s on the diagonal, we see that

span{v™;0 < n < M} = span{e";0 <7 < M}.

Note that A\av™ - f™ = v"Tp f™ = Asv™ - f™. For i # m, Az # M\m and consequently, v™ - f™ = 0. In
addition, from the formulas (12) and (14), v™ - f™ = 1.

Proposition 11. For eacht > 0,
=Y ALf (m)v"{n}. (15)
n

Proof. For t = 0, it suffices to check the action of T on elements of the spanning set {v™;0 < m < M}.
S my S oy = 3 (Z um{m}fﬂm)) Vin} = 3 el ) n} = v {n}
m n n m n

yielding the identity matrix. Here e(m,n) = 1 if n = m and 0 otherwise.
For the induction step,

TEH (m,n) = ZTD m,k)Tp(k,n) Z <Z "{k}) <Z )\mf’ﬁ(k)um{n}>
E \ 7 "

D AL (m meum{n} (Z k(K ) ZM" m) > Amv™ {n}e(n, i
n k m
Z)\%Hf" m)v™(n).

Corollary 12. The multistep transition probabilities for the lines of descent process
0 if m <n,
Th(m,n) = (1_%)t if m=n,
S (1 ) () T 72580 - (0P (O TS bty >

Proof. Note that f(m)v™{n} = 0 unless n < 7 < m. Using the formula for §p given in equation (9), we

have (]f1+0)—n(n*1+9) G—n)G+n—1+6)

op(j) —dp(n) = MM —1+90) M(M —1+90)

13



Thus, substituting into equation (12), we find that

N g o j—146 (R+1)---m 1x j—1+86
ffm= 11 —= Il —= = ~ | ——— (16)
joad j:ﬁ+1]—|—n—l+9 1---(m—-n) j:ﬁ+1j—|—n—l+9

Similarly, substituting into equation (14), we find that

n—1 n—1 i
7 k+1 k+0 iin(n+1)---n k4o
n — . — _1 n—n . . 17
Now, substitute these two expressions into equation (15). The eigenvalues are given by (11). |

Now we have a formula for Py{rp <t} = Py {D; = 0} = ThL(M,0)

5. Sampling. Take a sample of m balls from the urn at time step ¢. Given that all of the balls
are striped, we have shown in the proof of Theorem 9 that the distribution, WS%H of the sample will be
ESF(m,0), with 0 = (M — 1)pu/(1 — p). Thus, from a statistical point of view, we do not need all of the
balls to be striped, only the balls that are to be sampled.

Let v;" '“ be the distribution of the configuration of m balls sampled at time ¢ and consider the following
two samples. Draw a ball at random. If it is striped, include it in both samples. If it is unstriped, add it
only to the first sample. After m draws, the first sample, which we denote &, is complete. Its configuration,
C(£), has distribution v;" ‘¢ Now continue drawing until the second sample, f has m striped balls. TIts
configuration C(€), has distribution ng,u. Thus, (C(£),C(€)) is a coupling of /™ and 77,(;;,“

If N; = n, the two samples are the same precisely when all of the first m draws are are from the n striped

balls. This happens with probablity

() () = w31~ 717

Thus, by Theorem 2,

M
7 =7l < 1-P{C(E) = C@) < 1-Rofg = § = 1= 3 g = DU E D p, —ny.

M-1)--(M-m+1)
(18)
Note that is the case m = M, this sum reduces to Po{N; = M} = Po{rn < t} and returns the previous
formula (8).
From the point of view of the line of descent process, £ # £ if and only if at least one among the lines of
descent of the m sampled balls extends back more than ¢ time steps. Thus

,C

1" = ull < Pud7p > 1.

As Figure 5 shows, the impact to the sample size on total variation distance is small.
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Markov chain
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0.2

0.1
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0 50 100 150 200 250 300 350 400
ty= steps/M

Figure 5: Comparison of Pyoo{7p > tar} and Pio{7p > tps} with time measured in generations, for p = 0.025
and M = 200 .

6. Cutoff Phenenoma. Diaconis (1996) defines a cutoff phenomena as follows:

Definition 13. Let {T(ar; M > 1} be a sequence of Markov chains transition matrices having myr as their
respective stationary distributions. Pick sequences Ay and By tending to oo as M — oo whose ratio
By /An converges to 0. Set ty(g) to be the integer part of Ay + gBar. Then, the sequence of Markov
chains is said to possess a cutoff phenomena if

i sup | TG (,) = mudllrv = (o)

where limg_, ¢(g) = 0 and limg_,_ ¢(g) = 1.

To make a start in determining the sequences Aj; and Bjs given in the definition, note that if M > 2n,
then from (16), we have that

A (M (a+6)---(M—-140)  (M\ (n+6)---(2n—140) n+j+0
f(M)_(ﬁ>(2ﬁ+9)--~(M+ﬁ—1+9)_<ﬁ>(M+0) (M +n—-1+0) <>HM+3+9

(19)
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In addition, for the product term in (19)

A | GRSy NGRT) (L) RN G707 e () R 6T VTR
M—oo S M+j+96 M=o 20 M+5)A—p)+(M-1)p M—oo 1 G+1)(1—p)+(M—1)
(20)
Also, using (17),
-1
; ; k)0 +1
n — (=1 .
V0= (1) k[lo (i+n-1)/0+1
Consequently, for each n, ) )
lim »"{0} = (=1)". (21)

M—o0

The eigenvalue term

M= (1 _ ”("—He)))t ~ exp <_"(”—1+9)t)) e (_ﬁ((fz —1)(1—p) + (M — 1)u)t> @)

MM—=1+6 M(M~=1+6 M(M —1)

Looking at the approximation of the term n = 1 involving the second leading eigenvalue we want to set
ta(g) so that

A L () {0} ~ exp (— ’“‘“ﬁg)) M~ exp(~g).

Solving we have the following:

Theorem 14. Set tpr(g) to be the integer part of M (log(Mp) + g)/u. Then
Jim Par{mar > tar(g)} =1 - exp(—e™). (23)

Proof. We shall work with T (9) (M, 0) = Py{rar < tar(g)}. Using equations (19), (20), and (22), we find
that

F(M) ~ (Mn/f) A o exp (_ﬁ(ﬁ - —ﬁ(lof(Mu) +9)/n ﬁg> (M p)™

Now, combine with (21) to see that for n < M/2,

_ _ —1)e—19
lim A (i foy = S

M—o0 7l

(24)

For all 4 > 0, [v™"{0}| < 1 and f*(M) < M"/7!. Because 1 — x < exp(—=x),

thi(g (i —1)(1 — p)(log(Mp) + g)/ 1
)\ﬁ()gexp(— W1

~g) /)" < exp (-ng) /()"

provided that log(Mu) + g > 0 or M > exp(—g)/p.
Thus, for all 7 > 0

A @y (a) < L

n!

16



To establish (23), let € > 0 and choose /M so that

7—'7

Z — exp(—e7Y)

Wl ™

<L wmd Y Oy <y L

n=m+1 n=m-+1

Now, using the limit (24), choose M > 2/ so that M > M implies that

m

n,—ng
Z ( tM(g)fn ) n{o} o ( ) e ) < %
Consequently,
M ) . m )ﬁe—ﬁg

(7' (M, 0) —exp(—e )| < | D AZOVHON M)+ Y (A%M( (M0} - )‘

a=m+1 n=0 al

m _1)]€—ng

+ ;) =] —exp(—e9)| <e
and (23) follows. O

Remark 15. For the infinite alleles Moran model and the Ewens sampling formula, we have a cutoff with
Ay = Mlog(Mu)/p, By = M/ and ¢(g) = 1 — exp(—e™9). The distribution function 1 — ¢(g) is called
the type 1 extreme value distribution for maxima or the standard Gumbel distribution. To see one way that
this distribution approzimates the mazimum of random variables, let {n,;n > 1} be independent exponential
random variables with mean one. Then, P{n, < g} =1 — exp(—g). Thus,

M
1
L < . o M __ —g ]
P{lg%me logM < g} = (1 —exp(—g —log M)) <1e ) — exp(—e )

as M — oo
Transforming the limit in (23) into time tpr in generations, we find that

Py{tp > ta} =1 —exp (—Mpe ). (25)

If we use the Gumbel distribution estimate to choose a time ty;(p) to ensure that ||vg,, — Wl?/f,uH < p, then

Fat(®) > — log (A}M log(1 p>> . (26)
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Figure 6: Comparison of Pyoo{7p > tar} (solid line) and its approximating Gumbel distribution (dashed
line) as given in (25). Time ¢5s is measured in generations, p = 0.025 and M = 400.
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