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A goodness of fit test examine the case of a sequence if independent experiments each of which can have
1 of k possible outcomes. In terms of hypothesis testing, let π = (π1, . . . , πk) be postulated values of the
probability

Pπ{experiment takes on the i-th outcome} = πi

and let p = (p1, . . . , pn) denote the actual state of nature. Then, the parameter space is the n− 1 simplex

Θ = {p = (p1, . . . , pn); pi ≥ 0 for all i = 1, . . . , k,
k∑

i=1

pi = 1}.

The hypothesis test is

H0 : pi = πi, for all i = 1, . . . , k versus H1 : pi 6= πi, for some i = 1, . . . , k,

The data x is the outcome of the n experiments. A sufficient statistic is n = (n1, . . . , nk) where ni is
the number of time that outcome i occurs in n experiments. Thus,

n =
k∑

i=1

ni.

The likelihood function
L(p|n) = pn1

1 · · · pnk

k .

Its logarithm

lnL(p|n) =
k∑

i=1

ni ln pi.

We maximize this using the method of Lagrange multipliers with constraint

s(p) =
k∑

i=1

pi = 1.

Thus, at the maximum likelihood estimator (p̂1, . . . , p̂k),

∇p lnL(p̂|n) = λ∇p̂s(p).(
n1

p̂1
, . . . ,

nk

p̂k

)
= λ(1, . . . , 1)
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So, ni/p̂i = λ, ni = λp̂i. Now sum on i to obtain

k∑
i=1

ni = λ
k∑

i=1

p̂i and n = λ.

Consequently,
n1

p̂i
= n and p̂i =

ni

n
.

The likelihood ratio test

Λ(n) =
L(n|π)
L(n|p̂)

=
(

nπ1

n1

)n1

· · ·
(

nπk

nk

)nk

.

Recall that as the number of experiments n →∞,

−2 ln Λn(N) = −2
k∑

i=1

Ni ln
nπi

Ni

converges to a χ2
k−1 random variable. Here N = (N1, . . . , Nk) is the observed number of occurrences of

outcome i.
The traditional method was introduced between 1985 and 1900 by Karl Pearson and consequenttly has

been in use for longer that the idea of likelihood ratio tests. To show the connection between the two tests,
recall that

ln a ≈ (a− 1)− 1
2
(a− 1)2

is the quadratic Taylor polynomial approximation of ln a. Apply this to the logarithm of the likelihood ratio,
we find that

−2 ln Λn(N) = −2
k∑

i=1

Ni

((
nπi

Ni
− 1
)
− 1

2

(
nπi

Ni
− 1
)2
)

= −2
k∑

i=1

(nπi −Ni) +
k∑

i=1

Ni

(
nπi

Ni
− 1
)2

= 0 +
k∑

i=1

(nπi −Ni)2

Ni

The is generally rewritten by writing Oi = Ni to be the number of observed occurrences of i and
Ei = nπi to be the number of expected occurrences of i as given by H0. The data can be stored in a table

i 1 2 · · · k
observed O1 O2 · · · Ok

expected E1 E2 · · · Ek

Then,
k∑

i=1

(nπi −Ni)2

Ni
≈

k∑
i=1

(nπi −Ni)2

nπi
≈

k∑
i=1

(Oi − Ei)2

Ei
.
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1 Contingency tables

For an r× c contingency table, we consider two classifications for an experiment. Thus, we can partition the
outcome of each experiment into two groups:

A1, . . . Ac and B1, . . . Br.

Here, we write Oij to denote the number of occurences of the outcome Ai ∩ Bj are organize the results
in a two-way table.

A1 A2 · · · Ac total
B1 O11 O12 · · · O1c O1·
B2 O21 O22 · · · O2c O2·
...

...
...

. . .
...

...
Br Or1 Or2 · · · Orc Or·

total O·1 O·2 · · · O·c n

The null hypothesis is that the classifications A and B are independent . To set the parameter space for
this model, we have the rc− 1 simplex

Θ = {p = (pij , 1 ≤ i ≤ r, 1 ≤ j ≤ c); pij ≥ 0 for all i, j = 1,
r∑

i=1

c∑
j=1

pij=1}.

Write

pi· =
c∑

j=1

pij and p·j =
r∑

i=1

pij .

The hypothesis test is

H0 : pij = pi·p·j , for all i, j versus H1 : pij 6= pi·p·j , for some i, j.

Follow the procedure as before for the goodness of fit test to end with the test statistic

r∑
i=1

c∑
j=1

Oij ln
Eij

Oij
≈

r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
.

where
Eij = Oi·O·j/n.
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