Testing Hypotheses

March 11-13, 2008

1 Simple Hypotheses

In the simplest set-up for a statistical hypothesis, we consider two values $\theta_{0}, \theta_{1} \in \Theta$, the parameter space. We write the test as

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta=\theta_{1} .
$$

H_{0} is called the null hypothesis. H_{1} is called the alternative hypothesis. For this hypothesis test, the action space A has two points 0 and 1 . As before, the decision function

$$
d: \text { data } \rightarrow\{0,1\} .
$$

The loss function \mathcal{L} must satisfy

$$
\mathcal{L}\left(\theta_{0}, 0\right) \leq \mathcal{L}\left(\theta_{0}, 1\right) \quad \text { and } \quad \mathcal{L}\left(\theta_{1}, 1\right) \leq \mathcal{L}\left(\theta_{1}, 0\right)
$$

Without loss of generality, we can take the $0-1-c$ loss function

$$
\mathcal{L}\left(\theta_{0}, 0\right)=\mathcal{L}\left(\theta_{1}, 1\right)=0, \quad \mathcal{L}\left(\theta_{1}, 0\right)=1 \quad \text { and } \quad \mathcal{L}\left(\theta_{0}, 1\right)=c .
$$

This gives a risk function

$$
\mathcal{R}\left(\theta_{0}, d\right)=P_{\theta_{0}}\{d(X)=1\}, \quad \mathcal{R}\left(\theta_{1}, d\right)=c P_{\theta_{1}}\{d(X)=1\} .
$$

Typically, we shall choose $c=1$.

- The action $a=1$ is called rejecting the hypothesis. Rejecting the hypothesis when it is true is called a type I error. Its probability $\alpha=P_{\theta_{0}}\{d(X)=1\}$ is called the size of the test.
- The action $a=0$ is called failing to reject the hypothesis. Failiing to reject the hypothesis when if is false, called a type II error, has probability $\beta=P_{\theta_{1}}\{d(X)=0\}$. The power of the test $1-\beta=P_{\theta_{1}}\{d(X)=1\}$.

Given observations X, the rejection of the hypothesis is based on whether or not X lands in a critical region C. Thus,

$$
d(X)=1 \quad \text { if and only if } \quad X \in C
$$

Given a choice α for the size of the test, the choice of decision function d or equivalently, critical region C is called best or most powerful if for any choice of critical region C^{*} and corresponding decision function,

$$
d^{*}(\mathbf{x})=I_{C^{*}}(\mathbf{x})
$$

for a size α test,

$$
\beta=P_{\theta_{1}}\{d(X)=0\} \leq P_{\theta_{1}}\left\{d^{*}(X)=0\right\}=\beta^{*}
$$

or in terms of the critical regions.

$$
\begin{equation*}
\beta=1-P_{\theta_{1}}\{X \in C\}, \quad \beta^{*}=1-P_{\theta_{1}}\left\{X \in C^{*}\right\} \tag{1}
\end{equation*}
$$

and $\beta \leq \beta^{*}$.

2 The Neyman-Pearson Lemma

The Neyman-Pearson lemma tell us that the best test for a simple hypothesis is a likelihood ratio test.
Theorem 1 (Neyman-Pearson Lemma). Let $L(\theta \mid \mathbf{x})$ denote the likelihood function for the random variable X corresponding to the probability measure $P_{\theta}, \theta \in \Theta$. If there exists a critical region C of size α and a nonnegative constant k such that

$$
\frac{\mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right)}{\mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right)} \geq k \quad \text { for } \mathbf{x} \in C
$$

and

$$
\frac{\mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right)}{\mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right)} \leq k \quad \text { for } \mathbf{x} \notin C
$$

then C is the most powerful critical region of size α.
Proof. Let C^{*} be a critical region of size less than or equal to α. Let β and β^{*} denote, respectively, the probability of type II error for the critical regions C and C^{*} respectively. The theorem is to show that $\beta^{*} \geq \beta$.

Write C and C^{*} as the disjoint union.

$$
C=\left(C \backslash C^{*}\right) \cup\left(C \cap C^{*}\right), \quad \text { and } \quad C^{*}=\left(C^{*} \backslash C\right) \cup\left(C \cap C^{*}\right)
$$

Thus,

$$
\alpha=P_{\theta_{0}}\{X \in C\}=P_{\theta_{0}}\left\{X \in C \backslash C^{*}\right\}+P_{\theta_{0}}\left\{X \in C \cap C^{*}\right\}
$$

and

$$
\alpha \geq P_{\theta_{0}}\left\{X \in C^{*}\right\}=P_{\theta_{0}}\left\{X \in C^{*} \backslash C\right\}+P_{\theta_{0}}\left\{X \in C \cap C^{*}\right\}
$$

Consequently,

$$
\begin{equation*}
P_{\theta_{0}}\left\{X \in C \backslash C^{*}\right\}=\alpha-P_{\theta_{0}}\left\{X \in C \cap C^{*}\right\} \geq P_{\theta_{0}}\left\{X \in C \backslash C^{*}\right\} \tag{2}
\end{equation*}
$$

From equation (1), we obtain

$$
\beta^{*}-\beta=P_{\theta_{1}}\{X \in C\}-P_{\theta_{1}}\left\{X \in C^{*}\right\}=\int_{C} \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) d \mathbf{x}-\int_{C^{*}} \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) d \mathbf{x}
$$

Now subtract from both of the integrals the quantity

$$
P_{\text {theta }_{1}}\left\{X \in C \cap C^{*}\right\}=\int_{C \cap C^{*}} \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right) d \mathbf{x}
$$

to find that

$$
\begin{equation*}
\beta^{*}-\beta=P_{\theta_{1}}\left\{X \in C \backslash C^{*}\right\}-P_{\theta_{1}}\left\{X \in C^{*} \backslash C\right\}=\int_{C \backslash C^{*}} \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) d \mathbf{x}-\int_{C^{*} \backslash C} \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) d \mathbf{x} \tag{3}
\end{equation*}
$$

For $\mathbf{x} \in C \backslash C^{*} \subset C, \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) \geq k \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right)$ and

$$
\begin{equation*}
\int_{C \backslash C^{*}} \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) d \mathbf{x} \geq k \int_{C \backslash C^{*}} \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right) d \mathbf{x} \tag{4}
\end{equation*}
$$

For $\mathbf{x} \in C^{*} \backslash C \subset C^{*}, \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) \leq k \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right)$ and

$$
\begin{equation*}
\int_{C^{*} \backslash C} \mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right) d \mathbf{x} \leq k \int_{C^{*} \backslash C} \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right) d \mathbf{x} \tag{5}
\end{equation*}
$$

Apply inequalities (4) and (5) to inequality (3).

$$
\beta^{*}-\beta \geq k \int_{C \backslash C^{*}} \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right) d \mathbf{x}-k \int_{C^{*} \backslash C} \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right) d \mathbf{x}=k\left(\int_{C \backslash C^{*}} \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right) d \mathbf{x}-\int_{C^{*} \backslash C} \mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right) d \mathbf{x}\right) \geq 0
$$

by inquality (2).
If T is a sufficient statistic, then the likelihood ratio

$$
\frac{\mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right)}{\mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right)}=\frac{h(\mathbf{x}) g\left(\theta_{1}, T(x)\right)}{h(\mathbf{x}) g\left(\theta_{0}, T(x)\right)}=\frac{g\left(\theta_{1}, T(x)\right)}{g\left(\theta_{0}, T(x)\right)}
$$

depends only on the value of the sufficient statistic and the parameter values.

3 Examples

Example 2. Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be independent normal observations with unknown mean and known variance σ^{2}. The hypothesis is

$$
H_{0}: \mu=\mu_{0} \quad \text { versus } \quad H_{1}: \mu=\mu_{1} .
$$

The likelihood ratio

$$
\begin{aligned}
\frac{\mathbf{L}\left(\mu_{1} \mid \mathbf{x}\right)}{\mathbf{L}\left(\mu_{0} \mid \mathbf{x}\right)} & =\frac{\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{\left(x_{1}-\mu_{1}\right)^{2}}{2 \sigma^{2}} \cdots \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma^{2}}}{\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{\left(x_{1}-\mu_{0}\right)^{2}}{2 \sigma^{2}} \cdots \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp -\frac{\left(x_{n}-\mu_{1}\right)^{2}}{2 \sigma^{2}}} \\
& =\frac{\exp -\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu_{1}\right)^{2}}{\exp -\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}} \\
& =\exp -\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(\left(x_{i}-\mu_{1}\right)^{2}-\left(x_{i}-\mu_{0}\right)^{2}\right) \\
& =\exp -\frac{\mu_{0}-\mu_{1}}{2 \sigma^{2}} \sum_{i=1}^{n}\left(2 x_{i}-\mu_{1}-\mu_{0}\right)
\end{aligned}
$$

The likelihood test is equivalent to

$$
-\left(\mu_{0}-\mu_{1}\right) \sum_{i=1}^{n} x_{i} \geq k_{1}
$$

or for some k_{α}

$$
\bar{x} \geq k_{\alpha} \text { when } \mu_{0}<\mu_{1} \quad \text { or } \quad \bar{x} \leq k_{\alpha} \text { when } \mu_{0}>\mu_{1}
$$

To determine k_{α}, note that under the null hypothesis, \bar{X} is $N\left(\mu_{0}, \sigma^{2} / n\right)$ and

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

is a standard normal. Set z_{α} so that $P\left\{Z \geq z_{\alpha}\right\}=\alpha$. Then, for $\mu_{0}<\mu_{1}$,

$$
\bar{X} \geq \mu_{0}+\frac{\sigma}{\sqrt{n}} z_{\alpha}=k_{\alpha}
$$

For $\mu_{1}<\mu_{0}$, we have $\bar{X} \leq-k_{\alpha}$.
The power should

- increase as a function of $\left|\mu_{1}-\mu_{0}\right|$,
- decrease as a function of σ^{2}, and
- increase as a function of n.

In this situation, the type II error probability,

$$
\begin{aligned}
\beta & =P_{\mu_{1}}\{X \notin C\}=P_{\mu_{1}}\left\{\bar{X}<\mu_{0}+\frac{\sigma_{0}}{\sqrt{n}} z_{\alpha}\right\} \\
& =P_{\mu_{1}}\left\{\frac{\bar{X}-\mu_{1}}{\sigma_{0} / \sqrt{n}}<z_{\alpha}-\frac{\left|\mu_{1}-\mu_{0}\right|}{\sigma_{0} / \sqrt{n}}\right\}=\Phi\left(z_{\alpha}-\frac{\left|\mu_{1}-\mu_{0}\right|}{\sigma_{0} / \sqrt{n}}\right)
\end{aligned}
$$

For $\mu_{0}=10$ and $\mu_{1}=5$ and $\sigma=3$. Consider the 16 observations and choose a level $\alpha=0.05$ test, then

$>\mathrm{x}$

[1] $8.887753 \quad 2.35318412 .123175 \quad 10.020566 \quad 9.247956 \quad 3.711350$
[7] $13.907150 \quad 9.079790 \quad 8.826202 \quad 6.28876512 .12078310 .994228$
[13] $12.5225224 .529421 \quad 8.191806 \quad 10.195854$
> mean(x)
[1] 8.937532
Then

$$
Z=\frac{8.937-10}{3 / \sqrt{16}}=-1.417
$$

$>$ qnorm (0.05)
[1] -1.644854
$k_{\alpha}=-1.645>-1.417$ and we fail to reject the null hypothesis.
To compute the probability of a type II error, note that for $\alpha=0.05$,

$$
z_{\alpha}-\frac{\left|\mu_{1}-\mu_{0}\right|}{\sigma_{0} / \sqrt{n}}=1.645-\frac{5}{3 / \sqrt{16}}=-5.022
$$

>> pnorm (-5.022)
[1] $2.556809 \mathrm{e}-07$
This is called the z-test. If n is sufficiently large, the even if the data are not normally distributed, \bar{X} is well approximated by a normal distribution and, as long as the variance σ^{2} is known, the z-test is used in this case.

Example 3 (Bernoulli trials). Here $X=\left(X_{1}, \ldots, X_{n}\right)$ is a sequence of Bernoulli trials with unknown success probability θ, the likelihood

$$
\mathbf{L}(\theta \mid \mathbf{x})=(1-\theta)^{n}\left(\frac{\theta}{1-\theta}\right)^{x_{1}+\cdots+x_{n}}
$$

For the test

$$
H_{0}: \theta=\theta_{0} \quad \text { versus } \quad H_{1}: \theta=\theta_{1}
$$

the likelihood ratio

$$
\frac{\mathbf{L}\left(\theta_{1} \mid \mathbf{x}\right)}{\mathbf{L}\left(\theta_{0} \mid \mathbf{x}\right)}=\left(\frac{1-\theta_{1}}{1-\theta_{0}}\right)^{n}\left(\left(\frac{\theta_{1}}{1-\theta_{1}}\right) /\left(\frac{\theta_{0}}{1-\theta_{0}}\right)\right)^{x_{1}+\cdots+x_{n}}
$$

Consequently, the test is to reject H_{0} whenever

$$
\sum_{i=1}^{n} x_{i} \geq k_{\alpha} \text { when } \theta_{0}<\theta_{1} \quad \text { or } \quad \sum_{i=1}^{n} x_{i} \leq k_{\alpha} \text { when } \theta_{0}>\theta_{1}
$$

Note that under $H_{0}, \sum_{i=1}^{n} X_{i}$ has a $\operatorname{Bin}(n, \theta)$ distribution. Thus, in the case $\theta_{0}<\theta_{1}$, we choose k_{α} so that

$$
\begin{equation*}
\sum_{k=k_{\alpha}}^{n}\binom{n}{k} \theta_{0}^{k}\left(1-\theta_{0}\right)^{n-k} \leq \alpha \tag{6}
\end{equation*}
$$

In genreal, we cannot choose k_{α} to obtain the sum α. Thus, we take the minimum value of k_{α} to achieve the inequality in (6).

If $n \theta_{0}$ is sufficiently large, then, by the central limit theorem, $\sum_{i=1}^{n} X_{i}$ has a normal distribution. If we standardize

$$
Z=\frac{\bar{X}-\theta_{0}}{\sqrt{\theta_{0}\left(1-\theta_{0}\right) / n}}
$$

is approximately a standard normal random variable and we perform the z-test as in the previous exercise.
For example, if we take $\theta_{0}=1 / 2$ and $\theta_{1}>1 / 2$ and $\alpha=0.05$, then with 60 heads in 100 coin tosses

$$
Z=\frac{0.60-0.50}{0.05}=2
$$

> qnorm(0.95)
[1] 1.644854
Thus, $k_{0.05}=1.645<2$ and we reject the null hypothesis.

