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As before, we begin with a sample X = (X1, . . . , Xn) of random variables chosen according to one of a
family of probabilities Pθ where θ is element from the parameter space Θ.

In addition, f(x|θ), x = (x1, . . . , xn) will be used to denote the density function for the data when θ is
the state of nature.

Definition 1. The likelihood function is the density function regarded as a function of θ.

L(θ|x) = f(x|θ), θ ∈ Θ. (1)

The maximum likelihood estimator (MLE),

θ̂(x) = arg max
θ

L(θ|x). (2)

Note that if θ̂(x) is a maximum likelihood estimator for θ, then g(θ̂(x)) is a maximum likelihood estimator
for g(θ).

Typically, maximizing lnL(θ|x) will be easier.

Example 2 (Bernoulli trials). If the experiment consists of n Bernoulli trial with success probability θ, then

L(θ|x) = θx1(1− θ)(1−x1) · · · θxn(1− θ)(1−xn) = θ(x1+···+xn)(1− θ)n−(x1+···+xn).

lnL(θ|x) = ln θ(
n∑

i=1

xi) + ln(1− θ)(n−
n∑

i=1

xi) = nx̄ ln θ + n(1− x̄) ln(1− θ).

∂

∂θ
lnL(θ|x) = n

(
x̄

θ
− 1− x̄

1− θ

)
.

This equals zero when θ = x̄. Check that this is a maximum. Thus,

θ̂(x) = x̄.

1 Examples

Example 3 (Normal data). Maximum likelihood estimation can be applied to a vector valued parameter.
For a simple random sample of n normal random variables,

L(µ, σ2|x) =
(

1√
2πσ2

exp
−(x1 − µ)2

2σ2

)
· · ·
(

1√
2πσ2

exp
−(xn − µ)2

2σ2

)
=

1√
(2πσ2)n

exp− 1
2σ2

n∑
i=1

(xi − µ)2.
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lnL(µ, σ2|x) = −n

2
ln 2πσ2 − 1

2σ2

n∑
i=1

(xi − µ)2.

∂

∂µ
lnL(µ, σ2|x) =

1
σ2

n∑
i=1

(xi − µ) = .
1
σ2

n(x̄− µ)

Because the second partial derivative with respect to µ is negative,

µ̂(x) = x̄

is the maximum likelihood estimator.

∂

∂σ2
lnL(µ, σ2|x) = − n

σ2
+

1
(σ2)2

n∑
i=1

(xi − µ)2 =
n

(σ2)2

(
σ2 − 1

n

n∑
i=1

(xi − µ)2
)

.

Recalling that µ̂(x) = x̄, we obtain

σ̂2(x) =
1
n

n∑
i=1

(xi − x̂)2.

Note that the maximum likelihood estimator is a biased estimator.

Example 4 (Uniform random variables). If our data X = (X1, . . . , Xn) are a simple random sample drawn
from uniformly distributed random variable whose maximum value θ is unknown, then each random variable
has density

f(x|θ) =
{

1/θ if 0 ≤ x ≤ θ,
0 otherwise.

Therefore, the likelihood

L(θ|x) =
{

1/θn if, for all i, 0 ≤ xi ≤ θ,
0 otherwise.

Consequently, to maximize L(θ|x), we should minimize the value of θn in the first alternative for the likeli-
hood. This is achieved by taking

θ̂(x) = max
1≤i≤n

xi.

However,
θ̂(X) = max

1≤i≤n
Xi < θ

and the maximum likelihood estimator is biased.
For 0 ≤ x ≤ θ, the distribution of X(n) = max1≤i≤n Xi is

F(n)(x) = P{ max
1≤i≤n

Xi ≤ x} = P{X1 ≤ x}n = (x/θ)n.

Thus, the density

f(n)(x) =
nxn−1

θn
.

The mean
EθX(n) =

n

n + 1
θ.
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and thus
d(X) =

n + 1
n

X(n)

is an unbiased estimator of θ.

As can be seen in this and in other examples, the maximum likelihood estimator has some problems.
The attraction of this estimation techniques is in its application to large simple random samples.

2 Asymptotic Properties

If θ0 is the state of nature, then
L(θ0|X) > L(θ|X)

if and only if
1
n

n∑
i=1

ln
f(Xi|θ0)
f(Xi|θ)

> 0.

By the strong law of large numbers, this sum converges to

Eθ0

[
ln

f(X1|θ0)
f(X1|θ)

]
.

which is greater than 0. From this, we obtain

θ̂(X) → θ0 as n →∞.

We call this property of the estimator consistency.
Under some assumptions that is meant to insure some regularity, a central limit theorem holds in this

context. Here we have √
n(θ̂(X)− θ0)

converges in distribution as n → ∞ to a normal random variable with mean 0 and variance 1/I(θ0), the
Fisher information for one observation. Thus

Varθ0(θ̂(X)) ≈ 1
nI(θ0)

,

the lowest possible under the Crámer-Rao lower bound. This property is called asymptotic efficiency.
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