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Abstract

In this article, we establish, using a duality argument, an identity stating that the Laplace

transform of the length of a contiguous bacterial recombination region equals the probability

of choosing a given allele in a stationary population evolving according to the one-dimensional

Wright-Fisher diffusion model. Beyond giving us an improved inferential strategy for parameter

estimation in bacterial recombination, the matching of the selection and recombination param-

eters in the identity also suggests the existence of an intriguing formal relationship between

gene conversion and the ancestral selection graph.
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1 Introduction

Bacterial genomes are made up of one or a handful of chromosomes which are usually circular, with

size ranging from 140 Kb for the endosymbiont Carsonella (Nakabachi et al., 2006) to over 12

Mb for the myxobacterium Sorangium cellulosum (Pradella et al., 2002). Recombination is not

obligate in bacteria but has been shown to happen frequently in nature in a variety of species (e.g.

Maynard Smith et al. 1993; Guttman and Dykhuizen 1994; Feil et al. 2001). Bacterial sex is

analogous to gene-conversion rather than crossing-over, in the sense that there are always a clear

recipient and a clear donor cell, and the resulting bacterium has the same DNA as the recipient

for all of its genome except for a small contiguous segment where it is identical to the donor. The

average tract length of the imported regions has previously been estimated to be of the order of 1000

bp in several species (Milkman and Bridges, 1990; Jolley et al., 2005; Fearnhead et al., 2005).

When modeling recombination, the tract length distribution is usually assumed to be geometric (or

exponential) with a mean estimated from the data (Falush et al., 2001; McVean et al., 2002;

Falush et al., 2003; Suchard et al., 2003). The same assumption is usually made when modeling

gene-conversion in eukaryotes (Wiuf and Hein, 2000; Frisse et al., 2001).

Most previous methods estimating the recombination rate and tract length assume that each

imported region on the genome is due to exactly one recombination event. However, as the rate

of recombination, the average tract length and the time of exposure to recombination increase, so

does the probability that several recombination events overlap, meaning that the intersection of

chromosomal positions affected by at least two recombination events is non-empty (cf. Figure 1).

If the sequences imported by different recombination events can not be distinguished (for example

in the case of inter-population recombination as in Falush et al. 2003), it is possible to observe

which regions of the genome have been imported (shown in grey on Figure 1), but not the exact

starting point and tract length of individual recombination events. Thus, to do inference on the

parameters governing the recombination process itself, we need to know how the distribution of

length of contiguous imported regions is related to the initiation rate and tract length distribution

of individual recombination events. In particular the derivations described here are used in the
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computer package ClonalFrame which infers bacterial microevolution using multilocus sequence

data (Didelot and Falush, 2007).

Here we consider the genome to be continuous and of size L. Let ρ/2, µ−1 and δ denote the rate of

recombination per genome, average recombination tract length and time of exposure of the genome

to recombination respectively. We assume that recombination is uniformly likely to be initiated at

any position of the genome, so that the rate of initiation is λ = ρ
2

δ
L , and that the tract length of a

single recombination event is exponentially distributed with mean µ−1. We will also suppose that

recombination events are initiated at their upstream boundaries and then proceed downstream; an

equivalent result would be obtained if we allowed events to be initiated downstream and proceed

upstream or even if we allowed the orientation to be determined at random but independently of

all other recombination events. We would obtain a different process if we allowed recombination

to proceed in both directions from the initiation point. Because we are concerned with genomes

which are large in comparison with the total amount of material likely to have been imported, we

will ignore the possibility of wrap-around recombination events in circular genomes or edge effects

in linear genomes. With these assumptions in mind, we can model the distribution of imported

material in the genome as being generated by a Poisson point process on R, with intensity measure

λdx, which determines the location of the recombination initiation points, each of which is the

left end point of an interval of exponentially distributed length. Our problem is to determine the

distribution of the length of maximally overlapping intervals as a function of λ and µ.

To do so, we first observe that this interval-valued process is related to a queue. Indeed, each

recombination event (interval) can be identified with a customer who stays in the queue for an

exponentially distributed period of time with mean µ−1. Since prior recombination events do not

alter the tract length of subsequent recombination events starting in the same region, the queue

can be said to have an infinite number of servers. Using this analogy, the distribution of the length

of imported regions is the same as that of the busy period of an M/M/∞ queue (i.e. the contiguous

periods of time when there is at least one customer in the system) with arrival rate λ and mean

service time requirement µ−1. The length of non-imported regions is distributed as the idle periods

of that same queue (i.e. the contiguous periods of time when there is no customer in the system).
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Figure 2 shows the cumulative density functions of the busy periods of an M/M/∞ queue for

different values of λ/µ estimated using Monte-Carlo simulations. Although the Laplace transform

of the busy period queue has been determined and developed by Guillemin and Simonian (1995)

and Preater (1997) and is the subject of recent work by Roijers et al. (2006), we provide an

alternative derivation of their results which exploits the method of duality. This approach is of

interest because it proceeds via the Wright-Fisher diffusion and its moment dual, two stochastic

processes which are at the heart of theoretical population genetics.

2 M/M/∞ queues and the Wright-Fisher diffusion

We first recall that the M/M/∞ queue with arrival rate λ and mean waiting time µ−1 is a Markov

process (Mt, t ≥ 0) with state space N = {0, 1, 2, · · · } and generator

GMφ(n) = nµ
(

φ(n− 1) − φ(n)
)

+ λ
(

φ(n+ 1) − φ(n)
)

, (1)

for any bounded function φ : N → R. Because Mt satisfies the strong Markov property, the busy

period has the same distribution as the stopping time τM = inf{t > 0 : Mt = 0} if M0 = 1. To

determine the Laplace transform of τM , we will exploit the fact that a simple time change of Mt

leads to a moment dual for the Wright-Fisher diffusion.

To see that this is true, let (pt, t ≥ 0) be a Wright-Fisher diffusion with state space [0, 1] and

generator

Gpφ(p) =
1

2
p(1 − p)φ′′(p) +

(

ν1(1 − p) − ν2p− σp(1 − p)
)

φ′(p). (2)

for any twice continuously differentiable function φ : [0, 1] → R. As shown in [Ethier and Kurtz

1986, Chapter 10], this diffusion process arises as the weak limit of a sequence of suitably scaled

Markov chains which model the effects of genetic drift, mutation, and selection on the relative

frequency p ∈ [0, 1] of an allele A1 in a finite population segregating two alleles, A1 and A2. On the

diffusive time scale we assume that A1 mutates to A2 at rate ν2, that A2 mutates to A1 at rate ν1,

and that A2 has selective advantage σ ≥ 0 over A1. We also note that if ν1 > 0 and ν2 > 0, then
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pt has a unique stationary distribution with density

π(p) = Cp2ν1−1(1 − p)2ν2−1e−2σp, (3)

where C is a normalizing constant [Ethier and Kurtz 1986, Chapter 10, Lemma 2.1].

If we let (Nt, t ≥ 0) be a pure-jump Markov process on N corresponding to the generator

GNφ(n) =
1

2
n(n− 1)(φ(n− 1) − φ(n)) + nν1(φ(n− 1) − φ(n)) + nσ(φ(n + 1) − φ(n)), (4)

and we set f(p, n) = pn, then

Gpf(p, n) = GNf(p, n) − ν2nf(p, n). (5)

Since all of the terms appearing in Eq. (5) are bounded, Theorem 4.11 and Corollary 4.13 of [Ethier

and Kurtz 1986, Chapter 4] imply that pt and Nt are related by the following duality identity:

Ep[p
n0

t ] = En0

[

pNte−ν2

R

t

0
Ns ds

]

, (6)

which holds for all p ∈ [0, 1], all n0 ∈ N, and all t ≥ 0. Furthermore, because Nt almost surely

absorbs at 0 at some finite time T = inf{t > 0 : Nt = 0} (see for example Donnelly and Kurtz

1999), it follows that both the right-hand side, and therefore the left-hand side, of Eq. (6) converge

as t → ∞. Since pt takes values in a compact space, this fact, along with the uniqueness of the

stationary measure π(p) dp, implies that the law of pt tends weakly to π(p) dp as t→ ∞ and leads

to the following equation for the moments of the stationary measure:

∫ 1

0

pn0π(p)dp = En0

[

e−ν2

R

T

0
Ns ds

]

. (7)

Now let T1, · · · , TJ be the jump times of the process Nt, where TJ = T and T0 = 0, so that J

is the number of jumps taken by the process until it absorbs at 0, and let nk = NTk
be the state
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occupied by Nt immediately following the k-th jump. Conditional on nk = n, the holding time

Tk − Tk−1 is exponentially distributed with parameter 1
2n(n− 1) + nν1 + nσ and is independent of

all nj , j 6= k, and of all other holding times Tj − Tj−1, j 6= k. Equation (6) can be rewritten as:

∫ 1

0

pn0π(p)dp = En0

[

J
∏

k=1

e−ν2nk−1(Tk−Tk−1)

]

≡ En0

[

J
∏

k=1

e−ν2(τk−τk−1)

]

≡ En0

[

e−ν2τ
]

, (8)

where, conditional on nk−1 = n, τk − τk−1
D
= nk−1(Tk − Tk−1) is exponentially distributed with

parameter 1
2 (n− 1) + ν1 + σ, with the same independence structure as above, and τ ≡ τJ .

Introducing the process Vt with generator

GV φ(n) =
1

2
(n− 1)(φ(n− 1) − φ(n)) + ν1(φ(n− 1) − φ(n)) + σ(φ(n + 1) − φ(n)), (9)

we see that Vt and Nt differ only by a time change, that τk is equal in distribution to the time of

the k-th jump by Vt, and that τ
D
= inf{t > 0 : Vt = 0}. It follows from Eq. (8) that

∫ 1

0

pn0π(p)dp = En0

[

e−ν2τ
]

. (10)

Finally, to relate this result to the original M/M/∞ queue corresponding to (1), observe that by

taking ν1 = 1/2 and σ = λ
2µ , we will have M(t)

D
= V (2µt) and therefore τM

D
= τ/2µ. Thus, if

n0 = 1 (so that the beginning of the busy period is initiated by the arrival of a single individual),

then from Eqs. (3) and (10) we obtain the following equation for the Laplace transform, ψ(α), of

the busy period τM :

ψ(α) ≡ E1

[

e−ατM

]

= E1

[

e−(α/2µ)τ
]

=

∫ 1

0 p(1 − p)α/µ−1e−λp/µ dp
∫ 1

0
(1 − p)α/µ−1e−λp/µ dp

. (11)

This Laplace transform uniquely specifies the statistical distribution of τM . In particular, the

moments of τM can be simply calculated by evaluating the moment-generating function derivatives
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ψ(k)(0) = (−1)k
E1τ

k
M .

3 Discussion

We now return to the statistical problem of the estimation of the parameters λ and µ−1 of the

recombination process when all that is known is which regions of the genome have been imported.

Since the mean length of non-imported regions is λ−1, the maximum likelihood estimator of λ is the

inverse of the mean length of non-imported regions of the bacterial genome. A second parameter

estimate can be obtained by taking the inverse Laplace transform of the busy period distribution

τM and maximizing the likelihood. More generally, we can take the lengths of busy and idle periods

and maximize the product of their likelihoods for different value of λ and µ−1.

A simpler approach is to differentiate the Laplace transform and perform a method of moments

estimate following the strategy in Section 5 of Roijers et al. (2006). Defining

I(a, b) ≡

∫ 1

0

(1 − p)a−1e−bp dp = e−b

∫ 1

0

pa−1ebp dp

= e−b
∞
∑

k=0

bk

k!

∫ 1

0

pk+a−1 dp = e−b
∞
∑

k=0

bk

k!

1

k + a
= e−bS(a, b), (12)

and noting that

∫ 1

0

p(1 − p)a−1e−bp dp = e−b

∫ 1

0

(1 − p)pa−1ebp dp = I(a, b) − I(a+ 1, b), (13)

it follows that

ψ(α) =
I(α/µ, λ/µ) − I(α/µ+ 1, λ/µ)

I(α/µ, λ/µ)
= 1 −

S(α/µ+ 1, λ/µ)

S(α/µ, λ/µ)
. (14)

To find the expected duration of the busy period, we use Equations 12 and 14 to calculate

ψ′(α) = −
∂αS(α/µ+ 1, λ/µ)

S(α/µ, λ/µ)
+
∂αS(α/µ, λ/µ)

(S(α/µ, λ/µ))2
S(α/µ+ 1, λ/µ). (15)
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For the first term, the numerator is bounded and denominator is O(1/α) as α → 0. Thus, this

term has limit 0. For the fraction in the second term, the singular part in the numerator for α

small is −µ/α2 and in the denominator, it is (µ/α)2. Thus, this fraction has limit −1/µ as α→ 0.

Consequently,

E1τM = −ψ′(0) =
1

µ
S(1, λ/µ) =

1

µ

∞
∑

k=0

(λ/µ)k

(k + 1)k!
=
eλ/µ − 1

λ
(16)

This identity allows us to use the sample mean of the busy period to estimate the average recombi-

nation tract length µ−1 (Didelot and Falush, 2007). Alternatively, this expression can be derived

from the detailed balance condition satisfied by the stationary distribution of the queue.

The Wright-Fisher diffusion describes the forward evolution of a population subject to random

genetic drift, mutation and selection. The moment duality established in the previous section is

closely related to the ancestral selection graph (ASG, Krone and Neuhauser 1997; Neuhauser

and Krone 1997), which characterizes the genealogy of a sample of genes collected from such

a population. In particular, the duality calculation matches the selective advantage to a term

proportional to the recombination rate. An example of an ancestral selection graph is shown in

Figure 3: looking back in time, when k lineages are present, the rate of coalescence is k(k − 1)/2

as in the coalescent (Kingman, 1982) and the rate of branching is σk/2. Coalescence represents

two lineages finding a common ancestor (represented by the two lines merging on the graph) and

branching accounts for the unobserved selective deaths (represented by a lineage splitting into

two on the graph). Exactly the same rates of coalescence and branching occur when considering

recombination instead of selection and the resulting graph is then called an ancestral recombination

graph (ARG, Hudson 1983; Griffiths and Marjoram 1996). In the ARG, the rate of branching

per lineage is usually denoted ρ/2 and branchings represent recombination events through which a

lineage inherits ancestral material from two parents.

Eq. (7) has the following genealogical interpretation. Observe that
∫ 1

0 p
n0π(p)dp is the prob-

ability that a sample of size n0 drawn from a stationary population evolving according to the

Wright-Fisher diffusion consists only of individuals with allele A1. The process Nt can be thought
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of as a lines-of-descent modification of the ancestral selection graph (ASG, Krone and Neuhauser

1997), in which n lineages, all of type A1, are subject to the following events: pairs of lines coalesce

at rate 1/2, individual lines each undergo selective branching at rate σ, and each survive until the

most recent (forwards-in-time) A2-to-A1 mutation at rate ν1. The resulting disconnected graph

is a subgraph of the ASG and does not contain complete information about the genealogy of the

sample. The e−ν2nk(Tk−1−Tk) terms in Eq. (8) arise from our assumption that the sample consists

of A1 individuals only and that the lines-of-descent survive only until the most recent mutation

from A2; there is a factor of nk in the exponent because there are nk lines-of-descent between time

Tk−1 and Tk. Finally, τ is just the extinction time for the lines-of-descent process, i.e., the time

when all lineages, ancestral and virtual, have been absorbed by A2 individuals.

While it is intriguing that in attempting to understand a phylogenetic model of evolution de-

scribing the effects of gene conversion on genomic diversification we have been led to a population

genetical model of evolution of a non-neutral allele, further research will be necessary to determine

whether this is coincidental or hints at some deeper connection. One good starting point would

be the particle models of Donnelly and Kurtz (1999) that incorporate both ancestral selection

graphs and ancestral recombination graphs into an ancestral inference graph.
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ρ/2

Figure 1: Illustration of the effect of bacterial recombination. The circle represents the bacterial
genome and the bold arcs around it represent the different recombination events. The fragments of
the genome affected by recombination are in grey.
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Figure 2: Cumulative density function of the busy time of an M/M/∞ queue with mean customer
requirement µ−1 = 1 and different values of the arrival rate λ.
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Figure 3: An example of ancestral recombination/selection graph for n = 10 individuals and a
rate of recombination/selection of ρ/2 = σ/2 = 1. Horizontal arrows represent donor/incoming
branches.
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