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1 Chi-square Distributions

For any continuous random variable X, let Y = X?2.

Fy(y) = P{Y <y} = P{—y < X <y} = Fx(Vy) = Fx (=)

Thus, the density

Fr )= 5 5 (VD) ~ I (V)
If the density fx is symmetric, then .
fr(y) = ﬁf}((\/@)-

If we take Y = Z2 with Z the standard normal, then

1 Yy
exp ——.

We recognize this as the density of a gamma random variable with parameters o = 1/2 and § = 2.
Consequently, for Zy, Zs, ..., Z, independent standard normals, the sum ¥ = Z? + Z2 + ...+ Z2 isa a
gamma random variable with parameters a = n/2 and § = 2.

This random variable, called a chi-square random variable with n degress of freedom 2, has
density

1
- (n/2)-1 _J
fy(y) 9n/2T (1/2) Y exp
2 The t Distribution
The t-test is based on understanding the t statistic.
T — po
T =
(@)=

We shall accomplish this in four steps.
Step 1. \/n(X — po)/o is a standard normal random variable.

For this, notice that X is a normal random variable with mean p and standard deviation o/\/n



Step 2. For each i, X; — X and X are independent.

For normal random variables, uncorrelated random variables are independent.
Thus, it suffices to show that the covariance is 0. To that end, note that

Cov(X; — X, X) = Cov(X;, X) — Cov(X, X).

For the first term, use the fact that Cov(X1, X;) = 0 if i # j and Cov(X1, X;) = Var(X;) = 0. Then,

_ 1 — 1
Cov(X;, X) = - ZCOV(Xi,Xj) = Eaz.

j=1
From Step 1, we know that
S = 1
Cov(X,X) = Var(X) = —o?.
n
Now combine to see that Cov(X; — X, X) = 0.

Step 3. >, (X; — X)?/0? is a y-square random variable with n — 1 degrees of freedom.

Let Z; = (X; — u)/o and Z be the average of the Z;. Then Z; are independent standard normal random

variables.
n
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or
n

N7} = (Zi— Z2)* +nZ”.
i=1 i=1
Let’s write this
Y=U+V.

By step 2, the sum is of independent random variables. So, if we use the properties of moment generating
functions
My(?") = MU(T) . Mv(T).
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Now Y is a x2 random variable. So, My (r) = (1 — 2r)~"/2. V is a x? random variable. So, My (r) =

(1 —2r)Y/2. Consequently,
My(r)  (1—2r)™/?2

My (r) = My(r)  (1—2r)1/2 (1= 2r)=nbr

and U is a x2_, random variable.
In summary, we can write

Z
VU/(n—1)

where Z is a standard random variable, U is a x2_; random variable, and Z and U are independent.
Consequently, their densities are

un/2-3/2

— e—u/2
200=D/20((n = 1)/2)

f2(2) = ——e /2 and fy(u)




Step 4. Finding the density of T, fr(t).
Z and U have joint density
un/2-3/2

1 e .
20=1/2D((n — 1)/2)

fZ,U(Zau) = me_z /

Define the one to one transformation

—u/2

z

t=————= and v=u.
u/(n—1)
Then, the inverse transformation
t\/v
z= and u=w.
vn—1

the joint density
t\/v
tv) = A
frv(t,v) fZ,U(m
where |J(z,u)| is the absolute value of the Jacobian of the inverse transformation.
In this case,

o) (¢t 0)]-

J(t,v) = det | 2210t 83/8“}:01@{\@”0”‘1 t/(2 ”("—1)}: Vo

Ou/dt Ou/dv 1 n—1

Then,

- ! n/2-3/ v 2 Vo
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Finally, to find the marginal density for T, we integrate with respect to v to obtain

frlt) = \/%2@1)/21“((2 “0/2)vn-1 /OOO o exp (_g (1 - nlf 1)) dv.

Change variables by setting w = v(1 +t2/(n — 1)) /2.
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Note that

t2 _n/2 t2
<1+n—1> —exp—o

and n — oo. Thus, for large n, the t density is very close to the density of a standard normal.



