
Normal Distributions

November 18, 2008

1 Chi-square Distributions

For any continuous random variable X, let Y = X2.

FY (y) = P{Y ≤ y} = P{−√y ≤ X ≤ √
y} = FX(

√
y)− FX(−√y).

Thus, the density

fY (y) =
1

2
√

y
(fX(

√
y)− fX(−√y)).

If the density fX is symmetric, then

fY (y) =
1
√

y
fX(

√
y).

If we take Y = Z2 with Z the standard normal, then

fY (y) =
1√
2πy

exp−y

2
.

We recognize this as the density of a gamma random variable with parameters α = 1/2 and β = 2.
Consequently, for Z1, Z2, . . . , Zn independent standard normals, the sum Y = Z2

1 + Z2
2 + · · · + Z2

n is a a
gamma random variable with parameters α = n/2 and β = 2.

This random variable, called a chi-square random variable with n degress of freedom χ2
n, has

density

fY (y) =
1

2n/2Γ(n/2)
y(n/2)−1 exp−y

2
.

2 The t Distribution

The t-test is based on understanding the t statistic.

T (x) =
x̄− µ0

s/
√

n

We shall accomplish this in four steps.
Step 1.

√
n(X̄ − µ0)/σ is a standard normal random variable.

For this, notice that X̄ is a normal random variable with mean µ0 and standard deviation σ/
√

n

1



Step 2. For each i, Xi − X̄ and X̄ are independent.

For normal random variables, uncorrelated random variables are independent.
Thus, it suffices to show that the covariance is 0. To that end, note that

Cov(Xi − X̄, X̄) = Cov(Xi, X̄)− Cov(X̄, X̄).

For the first term, use the fact that Cov(X1, Xj) = 0 if i 6= j and Cov(X1, Xi) = Var(Xi) = σ2. Then,

Cov(Xi, X̄) =
1
n

n∑
j=1

Cov(Xi, Xj) =
1
n

σ2.

From Step 1, we know that

Cov(X̄, X̄) = Var(X̄) =
1
n

σ2.

Now combine to see that Cov(Xi − X̄, X̄) = 0.

Step 3.
∑n

i=1(Xi − X̄)2/σ2 is a χ-square random variable with n− 1 degrees of freedom.

Let Zi = (Xi − µ)/σ and Z̄ be the average of the Zi. Then Zi are independent standard normal random
variables.

1
σ2

n∑
i=1

(Xi − X̄)2 =
n∑

i=1

(Zi − Z̄)2 =
n∑

i=1

Z2
i − nZ̄2

or
n∑

i=1

Z2
i =

n∑
i=1

(Zi − Z̄)2 + nZ̄2.

Let’s write this
Y = U + V.

By step 2, the sum is of independent random variables. So, if we use the properties of moment generating
functions

MY (r) = MU (r) ·MV (r).

Now Y is a χ2
n random variable. So, MY (r) = (1 − 2r)−n/2. V is a χ2

1 random variable. So, MY (r) =
(1− 2r)1/2. Consequently,

MU (r) =
MY (r)
MV (r)

=
(1− 2r)−n/2

(1− 2r)−1/2
= (1− 2r)−(n−1)/2

and U is a χ2
n−1 random variable.

In summary, we can write

T =
Z√

U/(n− 1)

where Z is a standard random variable, U is a χ2
n−1 random variable, and Z and U are independent.

Consequently, their densities are

fZ(z) =
1√
2π

e−z2/2 and fU (u) =
un/2−3/2

2(n−1)/2Γ((n− 1)/2)
e−u/2.

2



Step 4. Finding the density of T , fT (t).

Z and U have joint density

fZ,U (z, u) =
1√
2π

e−z2/2 un/2−3/2

2(n−1)/2Γ((n− 1)/2)
e−u/2.

Define the one to one transformation

t =
z√

u/(n− 1)
and v = u.

Then, the inverse transformation

z =
t
√

v√
n− 1

and u = v.

the joint density

fT,V (t, v) = fZ,U (
t
√

v√
n− 1

, v)|J(t, v)|.

where |J(z, u)| is the absolute value of the Jacobian of the inverse transformation.
In this case,

J(t, v) = det
[

∂z/∂t ∂z/∂v
∂u/∂t ∂u/∂v

]
= det

[ √
v/
√

n− 1 t/(2
√

v(n− 1)
0 1

]
=

√
v√

n− 1
.

Then,

fT,V (t, v) =
1√

2π2(n−1)/2Γ((n− 1)/2)
vn/2−3/2 exp

(
−v

2

(
1 +

t2

n− 1

)) √
v√

n− 1

Finally, to find the marginal density for T , we integrate with respect to v to obtain

fT (t) =
1√

2π2(n−1)/2Γ((n− 1)/2)
√

n− 1

∫ ∞

0

vn/2−1 exp
(
−v

2

(
1 +

t2

n− 1

))
dv.

Change variables by setting w = v(1 + t2/(n− 1))/2.

fT (t) =
1√

2π2(n−1)/2Γ((n− 1)/2)
√

n− 1

∫ ∞

0

(
2w

1 + t2/(n− 1)

)n/2−1

e−w

(
2

1 + t2/(n− 1)

)
dw

=
1√

π(n− 1)Γ((n− 1)/2)

(
1 +

t2

n− 1

)−n/2 ∫ ∞

0

wn/2−1e−w dw

=
Γ(n/2)√

π(n− 1)Γ((n− 1)/2)

(
1 +

t2

n− 1

)−n/2

.

Note that (
1 +

t2

n− 1

)−n/2

→ exp− t2

2
and n →∞. Thus, for large n, the t density is very close to the density of a standard normal.
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