Math 466 - Practice Problems for Exam 2

1. Suppose that X_1, \ldots, X_n for a random sample from a uniform distribution on the interval $[0, \theta]$. Consider the hypothesis

$$H_0: \theta \ge 1$$
 versus $H_1: \theta < 1$

Let $T(X) = \max\{X_1, \dots, X_n\}$ and consider the critical region $C = \{\mathbf{x}; T(\mathbf{x}) \leq 2/3\}$.

- (a) Compute the power function for this test
- (b) Determine the size of this test.
- 2. The lifetime (in years) of a particular brand of car battery has a mean of μ and a standard deviation of σ .
 - (a) Suppose the population mean μ is 4.3 and the population standard deviation σ is 4.8. The lifetimes of a sample of n batteries are found. The probability the sample mean \bar{X}_n is between 4.1 and 4.5 is approximately $P(a \leq Z \leq b)$ where Z is a standard normal random variable. Find the values of a and b. (Your answers should depend on n.)
 - (b) Now suppose that the population mean is unknown, but the population standard deviation is still 4.8. For a sample of 400 batteries, the sample mean is $\bar{X}_n = 4.1$. Find a 95% confidence interval for the population mean μ .
- 3. Suppose it is known from recent studies that the average systolic blood pressure in American men over 60 is 130 (mm Hg). The claim is made that a new drug reduces blood pressure in such men within three months. To test this claim a random sample of 50 men from this group are treated with the drug for three months. Then their blood pressures are measured. The sample mean is found to be $\bar{X}_n = 128.0$ and the sample variance is $s^2 = 49.7$. Denote by μ the population mean systolic pressure after treatment. In other words, if we gave all American men over 60 the treatment for three months, μ would be the mean blood pressure of this population.
 - (a) State the appropriate null hypothesis.

- (b) State the appropriate alternative hypothesis. (You may assume there is no reason to expect the drug to raise blood pressure.)
- (c) Specify what the test is if we want a significance level of 0.05, and decide is you accept the null or alternative hypothesis.
- (d) Specify what the test is if we want a significance level of 0.01, and decide is you accept the null or alternative hypothesis.

$$P(Z < 1.281552) = 0.9,$$
 $P(Z < 1.644854) = 0.95,$
 $P(Z < 1.959964) = 0.975,$ $P(Z < 2.053749) = 0.98,$
 $P(Z < 2.326348) = 0.99,$ $P(Z < 2.575829) = 0.995$

4. We consider the following two populations. Population 1 is all working adults in the US with a college degree. Population 2 is all working adults in the US without a college degree. We consider their annual income in thousands of dollars, and let μ_1 and μ_2 be the means for the two populations. And let σ_1^2 and σ_2^2 be the variances for the two populations. We want to estimate $\mu_1 - \mu_2$, the average increase in salary from a college degree. Samples of size $n_1 = 400$ and $n_2 = 100$ are randomly chosen from the two populations. We find that their sample means and variances are

$$\bar{X}_{1,n_1} = 51.6$$
, $s_1^2 = 224$, $\bar{X}_{2,n_2} = 27.9$, $s_2^2 = 63$

(Remember these are in thousands of dollars, so 51.6 is \$51,600.)

- (a) $\bar{X}_{1,n_1} \bar{X}_{2,n_2}$ is the natural estimator for $\mu_1 \mu_2$. What is the variance of this estimator in terms of σ_1^2 and σ_2^2 ?
- (b) Find a 95% confidence interval for $\mu_1 \mu_2$.
- 5. The NRA claims that 40% of the US adult population is opposed to gun control legislation. To test this claim against the hypothesis that the percentage is less than 40%, a random sample of 400 US adults is chosen. It is found that 140 of the 400 are opposed to such legislation.
 - (a) State the null and alternative hypotheses.
 - (b) Specify what the test is if we want a significance level of 0.05, and decide if you accept the null or alternative hypothesis.

6. A population has unknown mean μ and known variance $\sigma^2 = 400$. We want to test the null hypothesis $\mu = 100$ against the alternative hypothesis $\mu > 100$. We have a large sample with sample mean \bar{X}_n . Let

$$Z = \frac{\bar{X}_n - 100}{\sigma / \sqrt{n}}$$

Our test is that we reject the null hypothesis if Z > 1.645.

- (a) What is the significance level of this test?
- (b) Recall that the power is the probability we reject the null hypothesis. It depends on μ . Suppose that n=100. What is the power when $\mu=105$?
- 7. A manufacturer of a brand of light bulbs claims that the mean life-time μ of their bulbs is more than one year.
 - (a) Find an appropriate test with significance level $\alpha=0.05$ of the null hypothesis $H_0: \mu=1$ against the alternative hypothesis $H_a: \mu>1$ (the manufacturer's claim). You may assume that the sample size is large.
 - (b) Suppose that a sample of size n=40 has sample mean $\overline{X_n}=1.5$ and sample variance $s^2=1.7$. Would you accept the manufacturer's claim?
 - (c) Compute the power of the above test if $\mu = 1.3$ and n = 40.
- 8. According to the Hardy-Weinberg formula, a genotype has two alleles A_1 and A_2 , with gene frequencies p_1 and p_2 , $p_1 + p_2 = 1$ should be in proportions $p_1^2 : 2p_1p_2 : p_2^2$ for respectively homozygous A_1 (A_1A_1), heterozygous (A_1A_2), and homozygous A_2 (A_2A_2) individuals. Test the hypothesis that A_1 and A_2 follow this formula with p = 0.5 with