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1 Probability Measures, Random Variables, and Expectation

A phenomena is called random if the exact outcome is uncertain. The mathematical study of randomness is
called the theory of probability.

A probability model has two essential pieces of its description.

1. Ω, the sample space, the set of possible outcomes.
An event is a collection of outcomes. and a subset of the sample space

A ⊂ Ω.

2. P , the probability assigns a number to each event.

1.1 Measures and Probabilities

Let Ω be a sample space {ω1, . . . , ωn} and for A ⊂ Ω, let |A| denote the number of elements in A. Then the
probability associated with equally likely events

P (A) =
|A|
|Ω|

(1.1)

reports the fraction of outcomes in Ω that are also in A.

Some facts are immediate:

1. P (A) ≥ 0.

2. If A ∩B = ∅, then P (A ∪B) = P (A) + P (B).

3. P (Ω) = 1.

From these facts, we can derive several others:

Exercise 1.1. 1. If A1, . . . , Ak are pairwise disjoint or mutually exclusive, (Ai ∩Aj = ∅ if i 6= j.) then

P (A1 ∪A2 ∪ · · · ∪Ak) = P (A1) + P (A2) + · · ·+ P (Ak).

2. For any two events A and B,

P (A ∪B) = P (A) + P (B)− P (A ∩B).

3. If A ⊂ B then P (A) ≤ P (B).

4. For any A, 0 ≤ P (A) ≤ 1.

5. Letting Ac denote the complement of A, then P (Ac) = 1− P (A).

The abstracting of the idea of probability beyond finite sample spaces and equally likely events begins
with demanding that the domain of the probability have properties that allow for the operations in the
exercise above. This leads to the following definition.
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Definition 1.2. A nonempty collection A of subsets of a set S is called an algebra if

1. S ∈ A.

2. A ∈ A implies Ac ∈ A.

3. A1, A2 ∈ A implies A1 ∪A2 ∈ A.

4. If, in addition, {An : n = 1, 2, · · · } ⊂ A implies ∪∞n=1An ∈ A, then A is called a σ-algebra.

Exercise 1.3. 1. Let S = R, then show that the collection ∪k
i=1(ai, bi], −∞ ≤ ai < bi ≤ ∞, k = 1, 2, . . .

is an algebra.

2. Let {Fi; i ≥ 1} be an increasing collection of σ-algebras, then ∪∞i=1Fi is an algebra. Give an example
to show that it is not a σ-algebra.

We can use these ideas we can begin with {An : n ≥ 1} ⊂ A and create other elements in A. For example,

lim sup
n→∞

An =
∞⋂

n=1

∞⋃
m=n

Am = {An infinitely often} = {An i.o.}, (1.2)

and

lim inf
n→∞

An =
∞⋃

n=1

∞⋂
m=n

Am = {An almost always} = {An a.a.}. (1.3)

Exercise 1.4. Explain why the terms infinitely often and almost always are appropriate. Show that {Ac
n i.o.} =

{An a.a.}c

Definition 1.5. If S is σ-algebra, then pair (S,S) is called a measurable space.

Exercise 1.6. An arbitrary intersection of σ-algebras is a σ-algebra. The power set of S is a σ-algebra.

Definition 1.7. Let C be any collection of subsets. Then, σ(C) will denote the smallest σ-algebra containing
C.

By the exercise above, this is the (non-empty) intersection of all σ-algebras containing C.

Example 1.8. 1. For a single set A, σ(A) = {∅, A, Ac, S}.

2. If C is a σ-algebra, then σ(C) = C.

3. If S ⊂ Rd, or, more generally, S is a topological space, and C is the set of the open sets in S, then
σ(C) is called the Borel σ-algebra and denoted B(S).

4. Let {(Si,Si)1 ≤ i ≤ n} be a set of measurable spaces, then the product σ-algebra on the space S1 ×
· · · × Sn is σ(S1 × · · · × Sn).

These σ-algebras form the domains of measures.

Definition 1.9. Let (S,S) be a measurable space. A function µ : S → [0,∞] is called a measure if

1. µ(∅) = 0.
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2. (Additivity) If A ∩B = ∅ then µ(A ∪B) = µ(A) + µ(B).

3. (Continuity) If A1 ⊂ A2 ⊂ · · · , and A = ∪∞n=1An, then µ(A) = limn→∞ µ(An).
If in addition,

4. (Normalization) µ(S) = 1, µ is called a probability.

Only 1 and 2 are needed if S is an algebra. We need to introduce the notion of limit as in 3 to bring in
the tools of calculus and analysis.

Exercise 1.10. Property 3 is continuity from below. Show that measures have continuity from above. If
A1 ⊃ A2 ⊃ · · · , and A = ∩∞n=1An, then µ(A1) < ∞ implies

µ(A) = lim
n→∞

µ(An).

Give an example to show that the hypothesis µ(A1) < ∞ is necessary.

Definition 1.11. The triple (S,S, µ) is called a measure space or a probability space in the case that µ is
a probability.

We will generally use the triple (Ω,F , P ) for a probability space. An element in Ω is called an outcome,
a sample point or realization and a member of F is called an event.

Exercise 1.12. Show that property 3 can be replaced with:
3’. (Countable additivity) If {An;n ≥ 1} are pairwise disjoint (i 6= j implies Ai ∩Aj = ∅), then

µ(
∞⋃

n=1

An) =
∞∑

n=1

µ(An).

Exercise 1.13. Define

A = {A ⊂ N; δ(A) = lim
n→∞

|A ∩ {1, 2, . . . , n}|
n

exists.}.

Definition 1.14. A measure µ is called σ-finite if can we can find {An;n ≥ 1} ∈ S, so that S = ∪∞n=1An

and µ(An) < ∞ for each n.

Exercise 1.15. (first two Bonferoni inequalities) Let {An : n ≥ 1} ⊂ S. Then

P (
n⋃

j=1

Aj) ≤
n∑

j=1

P (Aj) (1.4)

and

P (
n⋃

j=1

Aj) ≥
n∑

j=1

P (Aj)−
∑

1≤i<j≤n

P (Ai ∩Aj). (1.5)

Example 1.16. 1. (Counting measure, ν) For A ∈ S, ν(A) is the number of elements in A. Thus,
ν(A) = ∞ if A has infinitely many elements. ν is not σ-finite if Ω is uncountable.
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2. (Lebesgue measure m on (R1,B(R1)) For the open interval (a, b), set m(a, b) = b−a. Lebesgue measure
generalizes the notion of length. There is a maximum σ-algebra which is smaller than the power set in
which this measure can be defined. Lebesgue measure restricted to the set [0, 1] is a probability measure.

3. (Product measure) Let {(Si,Si, νi); 1 ≤ i ≤ k} be k σ-finite measure spaces. Then the product measure
ν1 × · · · × νk is the unique measure on σ(S1 × · · · × Sn) such that

ν1 × · · · × νk(A1 × · · · ×Ak) = ν1(A1) · · · νk(Ak) for all Ai ∈ Si, i = 1, . . . k.

Lebesgue measure on Rk is the product measure of k copies of Lebesgue measure on R1.

The events A1×· · ·×Ak are called measurable rectangles. We shall learn soon why a measure is determined
by its value on measurable rectangles.

Definition 1.17. We say A occurs almost everywhere (A a.e.) if µ(Ac) = 0. If µ is a probability, we say
A occurs almost surely (A a.s.). If two functions f and g satsify f = g a.e., then we say that g is a version
of f .

1.2 Random Variables and Distributions

Definition 1.18. Let f : (S,S) → (T, T ) be a function between measure spaces, then f is called measurable
if

f−1(B) ∈ S for every B ∈ T . (1.6)

If (S,S) has a probability measure, then f is called a random variable.

For random variables we often write {X ∈ B} = {ω : X(ω) ∈ B} = X−1(B). Generally speaking, we
shall use capital letters near the end of the alphabet, e.g. X, Y, Z for random variables. The range of X is
called the state space. X is often called a random vector if the state space is a Cartesian product.

Exercise 1.19. 1. The composition of measurable functions is measurable.

2. If X : (Ω,F) → (S,S) is a random variable, then the collection

σ(X) = {X−1(B) : B ∈ S} (1.7)

is a σ-algebra in Ω. Thus, X is a random variable if and only if σ(X) ⊂ F .

3. The collection
{B ⊂ S : X−1(B) ∈ F}

is a σ-algebra in S

4. If S and T are topological spaces and S and T are their respective Borel σ-algebras, then any continuous
function f : (S,S) → (T, T ) is measurable.

We would like to limit the number of events {X ∈ B} we need to verify are in F to establish that X is
a random variable. Here is an example in the case of real-valued X.

6



Proposition 1.20. Let X : Ω → [−∞,∞]. Then X is a random variable if and only if

X−1([−∞, x]) = {X ≤ x} ∈ F (1.8)

for every x ∈ R.

Proof. If X is a random variable, then obviously the condition holds.
By the exercise above,

C = {B ⊂ [−∞,∞] : X−1(B) ∈ F}

is a σ-algebra. Thus, we need only show that it contains the open sets. Because an open subset of [−∞,∞]
is the countable collection of open intervals, it suffices to show that this collection C contains sets of the form

[−∞, x1), (x2, x1), and (x2,∞].

However, the middle is the intersection of the first and third and the third is the complement of [−∞, x2]
whose iverse image is in F by assumption. Thus, we need only show that C contains sets of the form
[−∞, x1).

However, if we choose sn < x1 with limn→∞ sn = x1, then

[−∞, x1) =
∞⋃

n=1

[−∞, sn] =
∞⋃

n=1

(sn,−∞]c.

Exercise 1.21. If {Xn;n ≥ 1} is a sequence of random variables, then

X = lim sup
n→∞

Xn

is a random variable.

Example 1.22. 1. Let A be an event. The indicator function for A, IA(s) equals 1 if s ∈ A, and 0 is
s 6∈ A.

2. A simple function e take on a finite number of distinct values, e(s) =
∑n

i=1 aiIAi(s), A1, · · · , An ∈ S,
and a1, · · · , an ∈ S. Thus, Ai = {s : e(s) = ai}. Call this class of functions E.

Exercise 1.23. For a countable collection of sets, {An : n ≥ 1}

s ∈ lim inf
n→∞

An if and only if lim inf
n→∞

IAn
(s) = 1.

s ∈ lim sup
n→∞

An if and only if lim sup
n→∞

IAn(s) = 1.

Definition 1.24. Given a sequence of sets, {An : n ≥ 1}, if there exists a set A so that

IA = lim
n→∞

IAn ,

we write
A = lim

n→∞
An.
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Exercise 1.25. For two sets, A and B, define the symmetric difference A∆B = (A\B) ∪ (B\A). Let
{An : n ≥ 1} and {Bn : n ≥ 1} be sequences of sets with a limit. Show that

1. limn→∞(An ∪Bn) = (limn→∞ An) ∪ (limn→∞ Bn).

2. limn→∞(An ∩Bn) = (limn→∞ An) ∩ (limn→∞ Bn).

3. limn→∞(An\Bn) = (limn→∞ An)\(limn→∞ Bn).

4. limn→∞(An∆Bn) = (limn→∞ An)∆(limn→∞ Bn).

Definition 1.26. For any random variable X : Ω → S, the distribution of X is the probability measure

µ(B) = P (X−1(B)) = P{X ∈ B}. (1.9)

Exercise 1.27. µ is a probability measure on S.

Definition 1.28. If X : Ω → R, then the distribution function is given by

FX(x) = P{X ≤ x} = µ(−∞, x].

Theorem 1.29. Any distribution function has the following properties.

1. FX is nondecreasing.

2. limx→∞ FX(x) = 1, limx→−∞ FX(x) = 0.

3. FX is right continuous.

4. Set FX(x−) = limp→x− FX(p). Then FX(x−) = P{X < x}.

5. P{X = x} = F (x)− F (x−).

Proof. Because we are determining limits in a metric space, checking the limits for sequences is sufficient.

1. Use the fact that x1 ≤ x2 implies that {X ≤ x1} ⊂ {X ≤ x2}.

2. Let {sn;n ≥ 1} be an increasing sequence with limit ∞, Then {X ≤ s1} ⊂ {X ≤ s2} ⊂ · · · , and
∪∞n=1{X ≤ sn} = Ω. If {rn;n ≥ 1} is a decreasing sequence with limit −∞, Then {X ≤ r1} ⊃ {X ≤
r2} ⊃ · · · , and ∩∞n=1{X ≤ rn} = ∅. Now, use the continuity properties of a probability.

3. Now, let {rn;n ≥ 1} be a decreasing sequence with limit x. Then {X ≤ r1} ⊃ {X ≤ r2} ⊃ · · · , and
∩∞n=1{X ≤ rn} = {X ≤ x}. Again, use the continuity properties of a probability.

4. Also, if {sn;n ≥ 1} is a strictly increasing sequence with limit x, Then {X ≤ s1} ⊂ {X ≤ s2} ⊂ · · · ,
and ∪∞n=1{X ≤ sn} = {X < x}. Once more, use the continuity properties of a probability.

5. Note that P{X = x}+ P{X < x} = P{X ≤ x} and use 3 and 4.

Conversely, we have the following.
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Theorem 1.30. If F satisfies 1, 2 and 3 above, then it is the distribution of some random variable.

Proof. Let (Ω,F , P ) = ((0, 1),B((0, 1)),m) where m is Lebesgue measure and define for each ω,

X(ω) = sup{x̃ : F (x̃) < ω}.

Note that because F is nondecreasing {x̃ : F (x̃) < ω} is an interval that is not bounded below.

Claim. {ω : X(ω) ≤ x} = {ω : ω ≤ F (x)}.
Because P is Lebesgue measure on (0, 1), the claim shows that P{ω : X(ω) ≤ x} = P{ω : ω ≤ F (x)} =

F (x).

If
ω̃ ∈ {ω : ω ≤ F (x)},

then
x /∈ {x̃ : F (x̃) < ω̃}

and thus
X(ω̃) ≤ x.

Consequently,
ω̃ ∈ {ω : X(ω) ≤ x}.

On the other hand, if
ω̃ /∈ {ω : ω ≤ F (x)},

then
ω̃ > F (x)

and by the right continuity of F ,
ω̃ > F (x + ε)

for some ε > 0. Thus,
x + ε ∈ {x̃ : F (x̃) < ω̃}.

and
X(ω̃) ≥ x + ε > x

and
ω̃ /∈ {ω : X(ω) ≤ x}.

The definition of distribution function extends to random vectors X : Ω → Rn. Write the components of
X = (X1, X2, . . . , Xn) and define the distribution

Fn(x1, . . . , xn) = P{X1 ≤ x1, . . . , Xn ≤ xn}.

For any function G : Rn → R define the difference operators

∆k,(ak,bk]G(x1, . . . , xn) = G(x1, . . . , xk−1, bk, xk+1, . . . , xn)−G(x1, . . . , xk−1, ak, xk+1, . . . , xn).

Then, for example,

∆k,(ak,bk]F (x1, . . . , xn) = P{X1 ≤ x1, . . . , Xk−1 ≤ xk−1, Xk ∈ (ak, bk], Xk+1 ≤ xk+1, . . . , Xn ≤ xn}.
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Exercise 1.31. The distribution function Fn satisfies the following conditions.

1. For finite intervals Ik = (ak, bk],

∆1,I1 · · ·∆n,InFn(x1, . . . , xn) ≥ 0.

2. If each component of sm = (s1,m, . . . , sn,m) decreases to x = (x1, . . . , xn), then

lim
m→∞

Fn(sm) = Fn(x).

3. If each of the components of sm converge to ∞, then

lim
m→∞

Fn(sm) = 1.

4. If one of the components of sm converge to −∞, then

lim
m→∞

Fn(sm) = 0.

5. The distribution function satisfies the consistency property,

lim
xn→∞

Fn(x1, . . . , xn) = Fn−1(x1, . . . , xn−1).

Call any function F that satisfies these properties a distribution function. We shall postpone until the next
section our discussion on the relationship between distribution functions and distributions for multivariate
random variables.

Definition 1.32. Let X : Ω → R be a random variable. Call X

1. discrete if there exists a countable set D so that P{X ∈ D} = 1,

2. continuous if the distribution function F is absolutely continuous.

Discrete random variable have densities f with respect to counting measure on D in this case,

F (x) =
∑

s∈D,s≤x

f(s).

Thus, the requirements for a density are that f(x) ≥ 0 for all x ∈ D and

1 =
∑
s∈D

f(s).

Continuous random variable have densities f with respect to Lebesgue measure on R in this case,

F (x) =
∫ x

−∞
f(s) ds.
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Thus, the requirements for a density are that f(x) ≥ 0 for all x ∈ R and

1 =
∫ ∞

−∞
f(s) ds.

Generally speaking, we shall use the density function to describe the distribution of a random variable. We
shall leave until later the arguments that show that a distribution function characterizes the the distribution.

Example 1.33 (discrete random variables). 1. (Bernoulli) Ber(p), D = {0, 1}

f(x) = px(1− p)1−x.

2. (binomial) Bin(n, p), D = {0, 1, . . . , n}

f(x) =
(

n

x

)
px(1− p)n−x.

So Ber(p) is Bin(1, p).

3. (geometric) Geo(p), D = N
f(x) = p(1− p)x.

4. (hypergeometric) Hyp(N,n, k), D = {max{0, n−N + k}, . . . ,min{n, k}}

f(x) =

(
n
x

)(
N−n
k−x

)(
N
n

) .

For a hypergeometric random variable, consider an urn with N balls, k green. Choose n and let X be
the number of green under equally likely outcomes for choosing each subset of size n.

5. (negative binomial) Negbin(a, p), D = N

f(x) =
Γ(a + x)
Γ(a)x!

pa(1− p)x.

Note that Geo(p) is Negbin(1, p).

6. (Poisson) Pois(λ), D = N,

f(x) =
λx

x!
e−λ.

7. (uniform) U(a, b), D = {a, a + 1, . . . , b},

f(x) =
1

b− a + 1
.

Exercise 1.34. Check that
∑

x∈D f(x) = 1 in the examples above.
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Example 1.35 (continuous random variables). 1. (beta) Beta(α, β) on [0, 1],

f(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1− x)β−1.

2. (Cauchy) Cau(µ, σ2) on (−∞,∞),

f(x) =
1

σπ

1
1 + (x− µ)2/σ2

.

3. (chi-squared) χ2
a on [0,∞)

f(x) =
xa/2−1

2a/2Γ(a/2)
e−x/2.

4. (exponential) Exp(θ) on [0,∞),
f(x) = θe−θx.

5. (Fisher’s F ) Fq,a on [0,∞),

f(x) =
Γ((q + a)/2)qq/2aa/2

Γ(q/2)Γ(a/2)
xq/2−1(a + qx)−(q+a)/2.

6. (gamma) Γ(α, β) on [0,∞),

f(x) =
βα

Γ(α)
xα−1e−βx.

Observe that Exp(θ) is Γ(1, θ).

7. (inverse gamma) Γ−1(α, β) on [0,∞),

f(x) =
βα

Γ(α)
x−α−1e−β/x.

8. (Laplace) Lap(µ, σ) on R,

f(x) =
1
2σ

e−|x−µ|/σ.

9. (normal) N(µ, σ2) on R,

f(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
.

10. (Pareto) Par(α, c) on [c,∞),

f(x) =
cαα

xα+1
.

11. (Student’s t) ta(µ, σ2) on R,

f(x) =
Γ((a + 1)/2)√

απΓ(α/2)σ

(
1 +

(x− µ)2

aσ2

)−(a+1)/2

.
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12. (uniform) U(a, b) on [a, b],

f(x) =
1

b− a
.

Exercise 1.36. Check that some of the densities have integral 1.

Exercise 1.37 (probability transform). Let the distribution function F for X be continuous and strictly
increasing, then F (X) is a U(0, 1) random variable.

Exercise 1.38. 1. Let X be a continuous real-valued random variable having density fXand let g : R → R
be continuously differential and monotone. Show that Y = g(X) has density

fY (y) = fX(g−1(y))| d

dy
g−1(y)|.

2. If X is a normal random variable, then Y = exp X is called a log-normal random variable. Give its
density.

3. A N(0, 1) random variable is call a standard normal. Show that its square is a χ2
1 random variable.

1.3 Integration and Expectation

Let µ be a measure. Our next goal is to define the integral of µ with respect to a sufficiently broad class of
measurable function. This definition will give us a positive linear functional so that

IA maps to µ(A). (1.10)

For a simple function e(s) =
∑n

i=1 aiIAi
(s) define the integral of e with respect to the measure µ as∫

e dµ =
n∑

i=1

aiµ(Ai). (1.11)

You can check that the value of
∫

e dµ does not depend on the choice for the representation of e. By
convention 0×∞ = 0.

Definition 1.39. For f a non-negative measurable function, define the integral of f with respect to the
measure µ as ∫

S

f(s) µ(ds) =
∫

f dµ = sup{
∫

e dµ : e ∈ E , e ≤ f}. (1.12)

Again, you can check that the integral of a simple function is the same under either definition. If the
domain of f were an interval in R and Ai were subintervals, then this would be giving the supremum of lower
Riemann sums. The added flexibility in the choice of the Ai allows us to avoid the corresponding upper
sums in the definition of the Lebesgue integral.

For general functions, denote the positive part of f , f+(s) = max{f(s), 0} and the negative part of f by
f−(s) = −min{f(s), 0}. Thus, f = f+ − f− and |f | = f+ + f−.

If f is a real valued measurable function, then define the integral of f with respect to the measure µ as∫
f(s) µ(ds) =

∫
f+(s) µ(ds)−

∫
f−(s)µ(ds).
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provided at least one of the integrals on the right is finite. If
∫
|f | dµ < ∞, then we say that f is integrable.

We typically write
∫

A
f(s) µ(ds) =

∫
IA(s)f(s) µ(ds).

If the underlying measure is a probability, then we call the integral, the expectation or the expected value
and write,

EP X =
∫

Ω

X(ω) P (dω) =
∫

X dP

and
EP [X;A] = EP [XIA].

The subscript P is often dropped when their is no ambiguity in the choice of probability.

Exercise 1.40. 1. Let e ≥ 0 be a simple function and define ν(A) =
∫

A
e dµ. Show that ν is a measure.

2. If f = g a.e., then
∫

f dµ =
∫

g dµ.

3. If f ≥ 0 and
∫

f dµ = 0, then f = 0 a.e.

Example 1.41. 1. If µ is counting measure on S, then
∫

f dµ =
∑

s∈S f(s).

2. If µ is Lebesgue measure and f is Riemann integrable, then
∫

fdµ =
∫

f dx, the Riemann integral.

The integral is a positive linear functional, i.e.

1.
∫

f dµ ≥ 0 whenever f is non-negative and measurable.

2.
∫

(af + bg) dµ = a
∫

f dµ +
∫

g dµ for real numbers a, b and integrable functions f, g.

Together, these two properies guarantees that f ≥ g implies
∫

f dµ ≥
∫

g dµ provided the integrals exist.

Exercise 1.42. Suppose f is integrable, then

|
∫

f dµ| ≤
∫
|f | dµ.

Exercise 1.43. Any non-negative real valued measurable function is the increasing limit of simple functions,
e.g.,

fn(s) =
n2n∑
i=1

i− 1
2n

I{ i−1
2n <f≤ i

2n }(s) + nI{f>n}(s).

Exercise 1.44. If {fn : n ≥ 1} is a sequence of real valued measurable functions, then f(s) = lim infn→∞ fn(s)
is measurable.

Theorem 1.45 (Monotone Convergence). Let {fn : n ≥ 1} be an increasing sequence of non-negative
measurable functions. Then ∫

lim
n→∞

fn(s)µ(ds) = lim
n→∞

∫
fn(s) µ(ds). (1.13)
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Proof. By the definition, {
∫

fn dµ : n ≥ 1} is increasing sequence of real numbers. Call its limit L ∈ [0,∞].
By the exercise, f is a measurable function. Because integration is a positive linear functional,

∫
fn dµ ≤∫

f dµ, and

L ≤
∫

f dµ.

Let e, 0 ≤ e ≤ f , be a simple function and choose c ∈ (0, 1). Define the measure ν(A) =
∫

A
e dµ and

measurable sets An = {x : fn(x) ≥ ce(x)}. The sets An are increasing and have union S. Thus,∫
S

fn dµ ≥
∫

An

fn dµ ≥ c

∫
An

e dµ = cν(An).

L is an upper bound for the set

{c
∫

An

e dµ : n ≥ 1, c ∈ (0, 1)}.

Thus, L is greater than its supremum,
∫

S
e dµ. Finally, L is an upper bound for the set

{
∫

e dµ : e ∈ E , e ≤ f}

and thus L is greater than its supremum. In other words,

L ≥
∫

f dµ.

Exercise 1.46. 1. Let {fk : k ≥ 1} be a sequence of non-negative measurable functions. Then∫ ∞∑
k=1

fk(s) µ(dx) =
∞∑

k=1

∫
fk(s) µ(dx).

2. Let f be a non-negative measurable function, then

ν(A) =
∫

A

f(x) µ(dx)

is a measure.

Theorem 1.47 (Fatou’s Lemma). Let {fn : n ≥ 1} be a sequence of non-negative measurable functions.
Then ∫

lim inf
n→∞

fn(s) µ(ds) ≤ lim inf
n→∞

∫
fn(s) µ(ds).

Proof. For k = 1, 2, . . . and x ∈ S, define gk(x) = infi≥k fi(x), an increasing sequence of measurable
functions. Note that gk(x) ≤ fk(x), and consequently,∫

gk dµ ≤
∫

fk dµ, lim inf
k→∞

∫
gk dµ ≤ lim inf

k→∞

∫
fk dµ.
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By the definition limk→∞ gk(x) = lim infk→∞ fk(x).
By the monotone convergence theorem,

lim
k→∞

∫
gk dµ =

∫
lim inf
k→∞

fk dµ,

and the result follows.

Corollary 1.48. Let {An : n ≥ 1} ⊂ S, then

P (lim inf
n→∞

An) ≤ lim inf
n→∞

P (An) ≤ lim sup
n→∞

P (An) ≤ P (lim sup
n→∞

An).

Exercise 1.49. Give examples for sets {An : n ≥ 1} for which the inequalilties above are strict.

Theorem 1.50 (Dominated Convergence). Suppose that fn and gn are measurable functions

|fn| ≤ gn, fn →a.e. f, gn →a.e. g, lim
n→∞

∫
gn dµ =

∫
g dµ < ∞.

Then
lim

n→∞

∫
fn dµ =

∫
f dµ

.

Proof. Note that, for each n, gn + fn ≥ 0, and gn − fn ≥ 0. Thus, Fatou’s lemma applies to give

lim inf
n→∞

(∫
gn dµ +

∫
fn dµ

)
≥
∫

g dµ +
∫

f dµ

and therefore,

lim inf
n→∞

∫
fn dµ ≥

∫
f dµ.

Similarly,

lim inf
n→∞

(∫
gn dµ−

∫
fn dµ

)
≥
∫

g dµ−
∫

f dµ.

and therefore,

lim sup
n→∞

∫
fn dµ ≤

∫
f dµ.

and the theorem follows by lining up the appropriate inequalities.

Corollary 1.51 (Bounded Convergence). Suppose that fn : S → R are measurable functions satisfying

|fn| ≤ M fn →a.e. f.

Then, if µ(S) < ∞ inplies

lim
n→∞

∫
fn dµ =

∫
f dµ

.
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Example 1.52. Let X be a non-negative random variable with distribution function FX(x) = Pr{X ≤ x}.
Set Xn(ω) =

∑n2n

i=1
i−1
2n I{ i−1

2n <X(ω)≤ i
2n }. Then by the monotone convergence theorem and the definition of

the Riemann-Stieltjes integral

EX = lim
n→∞

EXn

= lim
n→∞

n2n∑
i=1

i− 1
2n

P{ i− 1
2n

< X ≤ i

2n
}

= lim
n→∞

n2n∑
i=1

i− 1
2n

(FX(
i

2n
)− FX(

i− 1
2n

))

=
∫ ∞

0

x dFX(x)

Theorem 1.53 (Change of variables). Let h : (S,S) → (T, T ). For a measure µ on S, define the induced
measure ν(A) = µ(h−1(A)). If g : T → R, is integrable with respect to the measure ν, then∫

g(t) ν(dt) =
∫

g(h(s)) µ(ds).

To prove this, use the “standard machine”.

1. Show that the identity holds for indicator functions.

2. Show, by the linearity of the integral, that the identity holds for simple functions.

3. Show, by the monotone convergence theorem, that the identity holds for non-negative functions.

4. Show, by decomposing a function into its positive and negative parts, that it holds for integrable
functions.

Typically, the desired identity can be seen to satisfy properties 2-4 and so we are left to verify 1.

To relate this to a familiar formula in calculus, let h : [a, b] → R be differentiable and strictly increasing,
and define µ so that µ(c, d) = h(d)− h(c) =

∫ d

c
h′(t) dt, then ν(c, d) = d− c, i.e., ν is Lebesgue measure. In

this case the change of variable reads∫ b

a

g(t) dt =
∫ h(b)

h(a)

g(h(s))h′(s) ds,

the Riemann change of variables formula.

Example 1.54 (Law of the Unconscience Statistician). Let X : Ω → S be a random variable with distribution
ν and let g : S → R be measurable so that E[|g(X)|] < ∞, then

E[g(X)] =
∫

g(x) ν(dx).
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If X is Rd-valued, with E|g(X)| < ∞, then g is Riemann integrable with respect to F , and g is Lebesgue
integrable with respect to ν and ∫

g(x) ν(dx) =
∫

g(x) dF (x).

Exercise 1.55. 1. If X is a positive real valued random variable and E[|g(X)|] < ∞, then

E[g(X)] =
∫

g′(x)P{X > x} dx.

2. Let h : S → R be integrable with respect to µ and define the measure

ν(A) =
∫

A

h(s) µ(ds).

If g : S → R is integrable with respect to ν, then∫
g(s) ν(ds) =

∫
g(s)h(s)µ(ds).

Example 1.56. Several choice for g have special names.

1. If g(x) = x, then µ = EX is call variously the expectation, the mean, and the first moment.

2. If g(x) = xk, then EXk is called the k-th moment.

3. If g(x) = (x)k, where (x)k = x(x− 1) · · · (x− k + 1), then E(X)k is called the k-th factorial moment.

4. If g(x) = (x− µ)k, then E(X − µ)k is called the k-th central moment.

5. The second central moment σ2
X = E(X − µ)2 is called the variance. Note that

Var(X) = E(X − µ)2 = EX2 − 2µEX + µ2 = EX2 − 2µ2 + µ2 = EX2 − µ2.

6. If X is Rd-valued and g(x) = ei〈θ,x〉, where 〈·, ·〉 is the standard inner product, then φ(θ) = Eei〈θ,X〉 is
called the Fourier transform or the characteristic function.

7. Similarly, if X is Rd-valued and g(x) = e〈θ,x〉, then m(θ) = Ee〈θ,X〉 is called the Laplace transform or
the moment generating function.

8. If X is Z+-valued and g(x) = zx, then ρ(z) = EzX =
∑∞

x=0 P{X = x}zx is called the (probability)
generating function.

Exercise 1.57. 1. Show that the characteristic function is uniformly continuous.

2. Let α = (α1, · · · , αn) be a multi-index and define Dα be the differential operator that takes αi derivatives
of the i-th coordinate. Assume that the moment generating function m for (X1, . . . , Xn) exists for θ in
a neighborhood of the origin, then

Dαm(0) = E[Xα1
1 · · ·Xαn

n ].
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3. Let X be Z+-valued random variable with generating function ρ. If ρ has radius of convergence greater
than 1, show that

ρ(n)(0) = E(X)n.

Exercise 1.58. 1. For a geometric random variable X, find E(X)2.

2. For a Poisson random variable X, find E(X)k.

Exercise 1.59. Compute parts of the following table for discrete random variables.

random variable parameters mean variance generating function
Bernoulli p p p(1− p) (1− p) + pz
binomial n, p np np(1− p) ((1− p) + pz)n

hypergeometric N,n, k nk
N

nk
N

(
N−k

N

) (
N−n
N−1

)
geometric p 1−p

p
1−p
p2

p
1−(1−p)z

negative binomial a, p a 1−p
p a 1−p

p2

(
p

1−(1−p)z

)a

Poisson λ λ λ exp(−λ(1− z))
uniform a, b b−a+1

2
(b−a+1)2−1

12
za

b−a+1
1−zb−a+1

1−z

Exercise 1.60. Let X be an exponential random variable with parameter θ, show that the k-th moment is
k!/θk.

Exercise 1.61. Compute parts of the following table for continuous random variables.

random variable parameters mean variance characteristic function

beta α, β α
α+β

αβ
(α+β)2(α+β+1) F1,1(a, b; iθ

2π )
Cauchy µ, σ2 none none exp(iµθ − σ2)
chi-squared a a 2a 1

(1−2iθ)a/2

exponential λ 1
λ

1
λ2

iλ
θ+iλ

F q, a a
a−2 , a > 2 2a2 q+a−2

q(a−4)(a−2)2

gamma α, β α
β

α
β2

(
iβ

θ+iβ

)α

Laplace µ, σ µ 2σ2 exp(iµθ)
1+σ2θ2

normal µ, σ2 µ σ2 exp(iµθ − 1
2σ2θ2)

Pareto α, c cα
α−1 , α > 1 c2α

(α−2)(α−1)2

t a, µ, σ2 µ, a > 1 σ2 a
a−2 , a > 1

uniform a, b a+b
2

(b−a)2

12 −i exp(iθb)−exp(iθa)
θ(b−a)
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2 Measure Theory

We now introduce the notion of a Sierpinski class and show how measures are uniquely determined by their
values for events in this class.

2.1 Sierpinski Class Theorem

Definition 2.1. A collection of subsets S of S is called a Sierpinski class if

1. A,B ∈ S, A ⊂ B implies B\A ∈ S

2. {An;n ≥ 1} ⊂ S, A1 ⊂ A2 ⊂ · · · implies that
⋃∞

n=1 An ∈ S.

Exercise 2.2. An arbitrary intersection of Sierpinski classes is a Sierpinski class. The power set of S is a
Sierpinski class.

By the exercise above, given a collection of subsets C of S, there exists a smallest Sierpinski class that
contains the set.

Exercise 2.3. If, in addition to the properties above,

3. A,B ∈ S, A ∩B ∈ S

4. S ∈ S

Then S is a σ-algebra.

Theorem 2.4 (Sierpinski class). Let C be a collection of subsets of a set S and suppose that C is closed
under pairwise intersections and contains S. Then the smallest Sierpinski class of subsets of S that contains
C is σ(C).

Proof. Let D be the smallest Sierpinski class containing C. Clearly, C ⊂ D ⊂ σ(C).
To show this, select D ⊂ S and define

ND = {A;A ∩D ∈ D}.

Claim. If D ∈ D, then ND is a Sierpinski class.

• If A,B ∈ ND, A ⊂ B then A ∩ D,B ∩ D ∈ D, a Sierpinski class. Therefore, (A ∩ D)\(B ∩ D) =
(A\B) ∩D ∈ D. Thus, A\B ∈ ND.

• If {An;n ≥ 1} ⊂ ND, A1 ⊂ A2 ⊂ · · · , then {(An ∩D);n ≥ 1} ⊂ D. Therefore, that ∪∞n=1(An ∩D) =
(∪∞n=1An) ∩D ∈ D. Thus, ∪∞n=1An ∈ ND.

Claim. If C ∈ C, then C ⊂ NC .

Because C is closed under pairwise intersections, for any A ∈ C, A ∩ C ∈ C ⊂ D and so A ∈ NC .

This claim has at least two consequences:

• NC is a Sierpinski class that contains C and, consequently, D ⊂ NC .

• The intersection of any element of C with any element of D is an element of D.
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Claim. If D ∈ D, then C ⊂ ND.

Let C ∈ C. Then, by the second claim, C ∩D ∈ D and therefore, C ∈ ND.

Consequently, ND is a Sierpinski class that contains D. However, the statement that D ⊂ ∩D∈DND

implies that that D is closed under pairwise intersections. Thus, by the exercise, D is a σ-algebra.

Theorem 2.5. Let C be a set closed under pairwise intersection and let P and Q be probability measures on
(Ω, σ(C)). If P and Q agree on C, then they agree on σ(C).

Proof. The set {A;P (A) = Q(A)} is easily seen to be a Sierpinski class that contains Ω.

Example 2.6. Consider the collection C = {(−∞, c];−∞ ≤ c ≤ +∞}. Then C is a set closed under pairwise
intersection and σ(C) is the Borel σ-algebra. Consequently, a measure is uniquely determined by its values
on the sets in C.

More generally, in Rd, let C be sets of the form

(−∞, c1]× · · · × (−∞, cd], −∞ < c1, . . . , cd ≤ +∞

is a set closed under pairwise intersection and σ(C) = B(Rd).

For an infinite sequence of random variables, we will need to make additional considerations in order to
state probabilities uniquely.

This give us a uniqueness of measures criterion. We now move on to finding conditions in which a finitely
additive set function defined on an algebra of sets can be extended to a countably additive set function.

2.2 Finitely additive set functions and their extensions to measures

The next two lemmas look very much like the completion a metric space via equivalence classes of Cauchy
sequences.

Lemma 2.7. Let Q be an algebra of sets on Ω and let R be a countably additive set function on Q so that
R(Ω) = 1. Let {An;n ≥ 1} ⊂ Q satisfying limn→∞ An = ∅. Then

lim
n→∞

R(An) = 0.

Proof. Case I. {An;n ≥ 1} decreasing.

The proof is the same as in the case of a σ-algebra.

Case II. The general case.

The idea is that lim supn→∞ An = ∅. For each m, p define

vm(p) = R(
p⋃

n=m

An).

Then,
vm = lim

p→∞
vm(p)
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exists. Let ε > 0 and choose a strictly increasing sequence p(m) (In particular, p(m) ≥ m.) so that

vm −R(
p(m)⋃
n=m

An) <
ε

2m
.

Note that limm→∞ ∪p(m)
n=mAn = ∅. Set

Ck =
k⋂

m=1

(
p(m)⋃
n=m

An).

Then {Ck; k ≥ 1} decreases with limk→∞ Ck = ∅. Therefore,

lim
k→∞

R(Ck) = 0.

Clearly,
R(Ak) ≤ R(Ck) + R(Ak\Ck).

Because R(Ak) ≥ 0 for each k, if suffices to show that

R(Ak\Ck) ≤ ε.

To this end, write Bm = ∪p(m)
n=mAn. Then Ck = ∩k

m=1Bm

R(Ak\Ck) ≤ R(Bk\
k⋂

m=1

Bm) ≤ R(
k⋃

m=1

(Bk\Bm)) ≤
k∑

m=1

R(Bk\Bm)

≤
k∑

m=1

R((
p(k)⋃
n=m

An)\Bm) ≤
k∑

m=1

(vm −R(Bm)) ≤
k∑

m=1

ε

2m
< ε.

Exercise 2.8. Let {an;n ≥ 1} and {bn;n ≥ 1} be bounded sequences. Then limn→∞ an and limn→∞ bn both
exist and are equal if and only if for every increasing sequence {m(n);n ≥ 1},

lim
n→∞

(an − bm(n)) = 0.

Lemma 2.9. Let Q be an algebra of subsets of Ω and let R be a nonnegative countably additive set function
defined on Q satisfying R(Ω) = 1. Let {An;n ≥ 1} ⊂ Q and {Bn;n ≥ 1} ⊂ Q be sequences of sets with a
common limit. Then,

lim
n→∞

R(An) and lim
n→∞

R(Bn)

exist and have the same limit.

Note that the limit need not be a set in Q.
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Proof. Choose an increasing sequence {m(n);n ≥ 1}, and note that

lim
n→∞

(An∆Bm(n)) = ( lim
n→∞

An)∆( lim
n→∞

Bm(n)) = ∅.

By the previous lemma,

lim sup
n→∞

|R(An)−R(Bm(n))| ≤ lim
n→∞

R(An∆Bm(n)) = 0.

Now, the lemma follows from the exercise.

In the case that A ∈ Q, taking the constant sequence for {Bn;n ≥ 1}, we obtain that R(A) =
limn→∞ R(An).

Exercise 2.10. A finitely additive set function R on an algebra Q, R(Ω) = 1 is countably additive if and
only if limn→∞ R(An) = 0 for every deceasing sequence {An;n ≥ 1} ⊂ Q for which limn→∞ An = ∅.

We now go on to establish a procedure for the extension of measures. We will begin with an algebra of
set Q. Our first extension, to Q1, plays the role of open and closed sets. The second extension, to Q2, plays
the role of Fσ and Gδ sets. Recall that for a regular Borel measure µ, and any measurable set E, there exists
an Fσ set A and a Gδ set B. A ⊂ E ⊂ B so that µ(B\A) = 0.

Definition 2.11. Let E be an algebra of subsets of Ω and let R̃ be a countably additive set funtion on E such
that R̃(Ω) = 1. The completion of R̃ with respect to E is the collection D of all sets E such that there exist
F,G ∈ E, F ⊂ E ⊂ G so that R̃(G\F ) = 0.

Thus, if this completion with respect to Q2 yields a collection D that contains σ(Q), then we can stop
the procedure at this second step. We will emulate that process here.

With this in mind, set Q0 = Q and let Qi be the limit of sequences from Qi−1. By considering constant
sequences, we see that Qi−1 ⊂ Qi.

In addition, set R0 = R and for A ∈ Qi, write A = limn→∞ An, An ∈ Qi−1. If Ri−1 is countably additive,
then we can extend Ri to Qi by

Ri(A) = lim
n→∞

Ri−1(An).

The lemmas guarantee us that the limit does not depend on the choice of {An;n ≥ 1}.
To check that Ri is finitely additive, choose A = limn→∞ An and B = limn→∞ Bn, A ∩ B = ∅. Verify

that
A = lim

n→∞
Ãn and B = lim

n→∞
B̃n,

where Ãn = An\Bn and B̃n = Bn\An. Then

Ri(A ∪B) = lim
n→∞

Ri−1(Ãn ∪ B̃n) = lim
n→∞

Ri−1(Ãn) + lim
n→∞

Ri−1(B̃n) = Ri(A) + Ri(B).

Lemma 2.12. If Ri−1 is countably additive, then so is Ri.
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Proof. We have that Ri−1 is finitely additive. Thus, it suffices to choose a decreasing sequence {An;n ≥
1} ⊂ Qi converging to ∅ and show that limn→∞ Ri−1(An) = 0. Write

An = lim
m→∞

Bm,n, {Bm,n;m,n ≥ 1} ⊂ Qi−1.

Because the An are decreasing, we arrange that Cm,1 ⊃ Cm,2 ⊃ · · · by setting

Cm,n =
n⋂

j=1

Bm,j

so that

lim
m→∞

Cm,n = lim
m→∞

(
n⋂

j=1

Bm,j) =
n⋂

j=1

Aj = An.

By definition,
Ri(An) = lim

m→∞
Ri−1(Cm,n).

By choosing a subsequence m(1) < m(2) < · · · appropriately, we can guarantee the convergence

lim
n→∞

(Ri(An)−Ri−1(Cm(n),n)) = 0.

By the lemma above, the following claim completes the proof.

Claim. limn→∞ Cm(n),n = ∅.

Recall that Cm,1 ⊃ Cm,2 ⊃ · · · . Therefore,

lim
n→∞

Cm(n),n ⊂ lim sup
n→∞

Cm(n),n ⊂ lim
n→∞

Cm(n),k = Ak.

Now, let k →∞

Thus, by induction, we have that Ri : Qi → [0, 1] is countably additive.

Lemma. Let E ∈ σ(Q). Then there exists A,B ∈ Q2 such that A ⊂ E ⊂ B and R2(B\A) = 0.

Proof. Let Q↑ (respectively, Q↓) be the collection the limits of all increasing (respectively, decreasing)
sequences in Q. Note that Q↑ ∪Q↓ ⊂ Q1, the domain of R1. Define

S = {E; for each choice of ε > 0, there exists F ∈ Q↓, G ∈ Q↑, F ⊂ E ⊂ G, R1(G\F ) < ε}.

Note that the lemma holds for all E ∈ S and that Q ⊂ S. Also, S is closed under pairwise intersection
and by taking F = G = Ω, we see that Ω ∈ S. Thus, the theorem follows from the following claim.

Claim. S is a Sierpinski class.

To see that S is closed under proper set differences, choose E1, E2 ∈ S, E1 ⊂ E2 and ε > 0, then, for
i = 1, 2 there exists

Fi ∈ Q↓, Gi ∈ Q↑, Fi ⊂ Ei ⊂ Gi, R1(Gi\Fi) <
ε

2
.

Then F2\G1 ∈ Q↑, F1\G2 ∈ Q↓,
F2\G1 ⊂ E2\E1 ⊂ G2\F1.
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Check that (G2\F1)\(F2\G1) = (G2\(F1 ∪ F2)) ∪ ((G1 ∩G2)\F1) ⊂ (G2\F2) ∪ (G1\F1). Thus,

R1((G2\F1)\(F2\G1)) ≤ R1(G2\F2) + R1(G1)\F1) < ε.

Now let {En;n ≥ 1} ⊂ S, E1 ⊂ E2 ⊂ · · · , E = ∪∞n=1En and let ε > 0. Consequently, we can choose

Fm ⊂ Em ⊂ Gm, Fm ∈ Q↓, Gm ∈ Q↑, R1(Gm\Fm) <
ε

2m+1
.

Note that

G =
∞⋃

n=1

Gn ∈ Q↑

and therefore

R1(G) = lim
N→∞

R1(
N⋃

n=1

Gn).

So choose N0 so that

R1(G)−R1(
N0⋃

n=1

Gn) <
ε

2
.

Now set

F =
N0⋃

n=1

Fn ∈ Q↓,

and note that F ⊂ EN0 ⊂ E ⊂ G. Now, by the finite additivity of R1, we have

R1(G\F ) = R1(G\
N0⋃

n=1

Gn) + R1((
N0⋃

n=1

Gn)\F )

<
ε

2
+

N0∑
n=1

R1(Gn\Fn) < ε

and E ∈ S. �

Summarizing the discussion above, we have

Theorem 2.13. Let E be an algebra of subsets of a space Ω and let R be a countably additive set function
on E such that R(Ω) = 1. Then there exist a unique probability measure P defined on σ(E) such that

P (A) = R(A) for every A ∈ E .

Exercise 2.14. Check the parts in the previous theorem.

Exercise 2.15. On Rn, consider a collection E of finite unions of sets of the form

(a1, b1]× · · · × (an, bn].

Verify that E is an algebra. Let Fn be a distribution function on Rn and define

R((a1, b1]× · · · × (an, bn]) = ∆1,I1 · · ·∆n,In
Fn(x1, . . . , xn)

where Ik = (ak, bk]. Show that R is countably additive on E.
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3 Multivariate Distributions

How do we modify the probability of an event in light of the fact that something is known?

In a standard deck of cards, if the top card is A♠, what is the probability that the second card is an ace?
a ♠? a king?

All of your answers have 51 in the denominator. You have mentally restricted the sample space from
Ω with 52 outcomes to B = {all cards but A♠} with 51 outcomes. We call the answer the conditional
probability.

For equally likely outcomes, we have a formula.

P (A|B) = the proportion of outcomes in A that are also in B

=
|A ∩B|
|B|

=
|A ∩B|/|Ω|
|B|/|Ω|

The last identity for P (A|B) with equally likely outcomes can be interpreted as the ratio of probabilities:

P (A|B) =
P (A ∩B)

P (B)

Exercise 3.1. Let P (B) > 0, then
Q(A) = P (A|B)

is a probability meaasure.

We now say that A independent of B if

P (A|B) = P (A)

or, using the formula above,
P (A ∩B) = P (A)P (B)

and B is independent of A.

Exercise 3.2. If A and B are independent, then so are A and Bc, Ac and B, and Ac and Bc. Thus, every
event in σ(A) is independent of every event in σ(B).

We now look to a definition that works more generally.

3.1 Independence

Definition 3.3. 1. A collection of σ-algebras {Fλ;λ ∈ Λ} are independent if for any finite choice A1 ∈
Fλ1 , . . . , An ∈ Fλn

P (
n⋂

i=1

Ai) =
n∏

i=1

P (Ai).
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2. A collection of events {Aλ : λ ∈ Λ} are independent if {σ(Aλ);λ ∈ Λ} are independent.

3. A collection of random variables {Xλ : λ ∈ Λ} are independent if {σ(Xλ);λ ∈ Λ} are independent. In
other words, for events Bλ in the state space for Xλ,

P (
n⋂

i=1

{Xλi ∈ Bλi}) =
n∏

i=1

P{Xλi ∈ Bλi}.

Exercise 3.4. 1. A collection of events {Aλ : λ ∈ Λ} are independent if and only if the collection of
random variables {IAλ

: λ ∈ Λ} are independent.

2. If a sequence {Xk; k ≥ 1} of random variables are independent, then

P{X1 ∈ A1, X2 ∈ A2 . . .} =
∞∏

i=1

P{Xi ∈ Ai}.

3. If {Xλ : λ ∈ Λ} are independent and {fλ : λ ∈ Λ} are measurable function on the range of Xλ then,
{f(Xλ) : λ ∈ Λ} are independent.

Theorem 3.5. Let Λ be finite and write Λ = Λ1 ∪ Λ2, with Λ1 ∩ Λ2 = ∅, then

F1 = σ{Xλ : λ ∈ Λ1} and F2 = σ{Xλ : λ ∈ Λ2}

are independent.

Proof. Let {λ1, . . . , λm} ⊂ Λ2 and define

D = {Xλ1 ∈ B1, . . . , Xλm
∈ Bm}.

Assume P (D) > 0 and define
P1(C) = P (C|D), C ∈ F1.

If C = {Xλ̃1
∈ B̃1, . . . , Xλ̃m

∈ B̃k} Then,

P (C ∩D) = P (C)P (D)

and
P1(C) = P (C).

But such sets form a Sierpinski class C closed under pairwise intersection with σ(C) = F1. Thus, P1 = P on
F1.

Now fix an arbitrary C ∈ F1 with P (C) > 0 and define

P2(D) = P (D|C), D ∈ F2.

Arguing as before we obtain
P2(D) = P (D), D ∈ F2.

Therefore,
P (C ∩D) = P (C)P (D), C ∈ F1, D ∈ F2

whenever P (C) > 0. But this identity is immediate if P (C) = 0. Thus, F1 and F2 are independent.
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When we learn about infinite products and the product topology, we shall see that the theorem above
holds for arbitrary Λ with the same proof.

Exercise 3.6. Let {Λj ; j ∈ J} be a partition of a finite set Λ. Then the σ-algebras Fj = σ{Xλ;λ ∈ Λj} are
independent.

Thus, if Xi has distribution νi, then for X1, . . . , Xn independent and for measurable sets Bi, subsets of
the range of Xi, we have

P{X1 ∈ B1, . . . , Xn ∈ Bn} = ν1(B1) · · · νn(Bn) = (ν1 × · · · νn)(B1 × · · · ×Bn),

the product measure.
We now relate this to the distribution functions.

Theorem 3.7. The random variables {Xn;n ≥ 1} are independent if and only if their distribution functions
satisfy

F(X1,...,Xn)(x1, . . . , xn) = FX1(x1) · · ·FXn
(xn).

Proof. The necessity follows by considering sets {X1 ≤ x1, . . . , Xn ≤ xn}.
For sufficiency, note that the case n = 1 is trivial. Now assume that this holds for n = k, i.e., the product

representation for the distribution function implies that for all Borel sets B1, . . . , Bk,

P{X1 ∈ B1, . . . , Xk ∈ Bk} = P{X1 ∈ B1} · · ·P{Xk ∈ Bk}.

Define
Q1(B) = P{Xk+1 ∈ B} and Q̃1(B) = P{Xk+1 ∈ B|X1 ≤ x1, . . . , Xk ≤ xk}.

Then Q1 = Q̃1 on sets of the form (−∞, xk+1] and thus, by the Sierpinski class theorem, for all Borel sets.
Thus,

P{X1 ≤ x1, X2 ≤ x2, . . . , Xk ≤ xk, Xk+1 ∈ B} = P{X1 ≤ x1, . . . , Xk ≤ xk}P{Xk+1 ∈ B}

and X1, . . . , Xk+1 are independent.

Exercise 3.8. 1. For independent random variables X1, X2 choose measurable functions f1 and f2 so
that E|f1(X1)f2(X2)| < ∞, then

E[f1(X1)f2(X2)] = E[f1(X1)]E[f2(X2)].

(Hint: Use the standard machine.)

2. If X1, X2 are independent random variables having finite variance, then

Var(X1 + X2) = Var(X1) + Var(X2).

Corollary 3.9. For independent random variables X1, . . . Xn choose measurable functions f1, . . . fn so that

E|
n∏

i−1

fi(Xi)| < ∞,

then

E[
n∏

i−1

fi(Xi)] =
n∏

i−1

E[fi(Xi)].

28



Thus, we have three equivalent identities to establish independence, using either the distribution, the
distribution function, and products of functions of random variables.

We begin the proofs of equivalence with the fact that measures agree on a Sierpinski class, S. If we can
find a collection of events C ⊂ S that contains the whole space and in closed under intersection, then we can
conclude by the Sierpinski class theorem that they agree on σ(C).

The basis for this choice, in the case where the state space Sn is a product of topological spaces, is that a
collection U1× · · · ×Un forms a subbasis for the topology whenever Ui are arbitrary choices from a subbasis
for the topology of S.

Exercise 3.10. 1. Let Z+-valued random variables X1, . . . , Xn have generating functions ρX1 , . . . , ρXn
,

then
ρX1+···+Xn

= ρX1 × · · · × ρXn
.

Show when the sum of independent

(a) binomial random variables is a binomial random variable,

(b) negative binomial random variables is a negative binomial random variable,

(c) Poisson random variables is a Poisson random variable.

Definition 3.11. Let X1 and X2 have finite variance. If their means are µ1 and µ2 respectively, then their
covariance is defined to be

Cov(X1, X2) = E[(X1 − µ1)(X2 − µ2)] = EX1X2 − µ2EX1 − µ1EX2 + µ1µ2 = EX1X2 − µ1µ2.

If both of these random variables have positive variance, then their correlation coefficient

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)Var(X2)
.

For a vector valued random variable X = (X1, . . . , Xn) define the covariance matrix Var(X) as a matrix
whose i, j entry is Cov(Xi, Xj)

Exercise 3.12. 1. If X1 and X2 are independent, then ρ(X1, X2) = 0. Give an example to show that the
converse is not true.

2. Let σ2
Xi

= Var(Xi), i = 1, 2, then

σ2
X1+X2

= σ2
X1

+ σ2
X2

+ 2σX1σX2ρ(X1, X2).

3. −1 ≤ ρ(X1, X2) ≤ 1. Under what circumstances is ρ(X1, X2) = ±1?

4. Assume that the random variables {X1, . . . , Xn} have finite variance and that each pair is uncorrelated.
Then

Var(X1 + · · ·+ Xn) = Var(X1) + · · ·+ Var(Xn).

5. Check that the covariance satisfies

Cov(a1X1 + b1, a2X2 + b2) = a1a2Cov(X1, X2).

In particular Var(aX) = a2Var(X).
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6. Let a1, a2 > 0, and b1, b2 ∈ R, then ρ(a1X1 + b1, a2X2 + b2) = ρ(X1, X2).

7. Let A be a d× n matrix and define Y = AX, then Var(Y ) = AVar(X)AT . The case d = 1 shows that
the covariance matrix in non-negative definite.

3.2 Fubini’s theorem

Theorem 3.13. Let (Si,Ai, µi), i = 1, 2 be two σ-finite measures. If f : S1 × S2 → R is integrable with
respect to µ1 × µ2, then∫

f(s1, s2) (µ1 × µ2)(ds1 × ds2) =
∫

[
∫

f(s1, s2) µ1(ds1)]µ2(ds2) =
∫

[
∫

f(s1, s2) µ2(ds2)]µ1(ds1).

Use the “standard machine” to prove this. Use the Sierpinski class theorem to argue that it suffices
to begin with indicators of sets of the form A1 × A2. The identity for non-negative functions is known as
Tonelli’s theorem.

Example 3.14. If fn is measurable, then consider the measure µ × ν where ν is counting measure on Z+

to see that
∞∑

n=1

∫
|fn| dµ < ∞,

implies
∞∑

n=1

∫
fn dµ =

∫ ∞∑
n=1

fn dµ.

Exercise 3.15. Assume that (X1, . . . , Xn) has distribution function F(X1,...,Xn) and density f(X1,...,Xn) with
respect to Lebesgue measure.

1. The random variables (X1, . . . , Xn) with density f(X1,...,Xn) are independent if and only if

f(X1,...,Xn)(x1, . . . , xn) = fX1(x1) · · · fXn
(xn)

where fXk
is the density of Xk, k = 1, 2, . . . , n

2. The marginal density

f(X1,...,Xn−1)(x1, . . . , xn−1) =
∫

f(X1,...,Xn)(x1, . . . , xn) dxn.

Let X1 and X2 be independent Rd-valued random variables having distributions ν1 and ν2 respectively.
Then the distribution of their sum,

ν(B) = P{X1 + X2 ∈ B} =
∫ ∫

IB(x1 + x2) ν1(dx1)ν2(dx2) =
∫

ν1(B − x2)ν2(dx2) = (ν1 ∗ ν2)(B),

the convolution of the measures ν1 and ν2.
If ν1 and ν2 have densities f1 and f2 with respect to Lebesgue measure, then

ν(B) =
∫ ∫

IB(x1 + x2)f1(x1)f2(x2) dx1dx2 =
∫ ∫

IB(s)f1(s− y)f2(y) dyds =
∫

B

(f1 ∗ f2)(s) ds,

the convolution of the functions f1 and f2. Thus, ν has the convolution f1 ∗ f2 as its density with respect to
Lebesgue measure.
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Exercise 3.16. Let X and Y be independent random variables and assume that the distribution of X has a
density with respect to Lebesgue measure. Show that the distribution of X + Y has a density with respect to
Lebesgue measure.

A similar formula holds if we have a Zd valued random variable and look at random variable that are
absolutely continuous with respect to counting measure.

(f1 ∗ f2)(s) =
∑
y∈Zd

f1(s− y)f2(y), and ν(B) =
∑
s∈B

(f1 ∗ f2)(s).

Exercise 3.17. 1. Let Xi be independent N(µi, σ
2
i ) random variables, i = 1, 2. Then X1 + X2 is a

N(µ1 + µ2, σ
2
1 + σ2

2) random variable.

2. Let Xi be independent χ2
ai

random variables, i = 1, 2. Then X1 + X2 is a χ2
a1+a2

random variable.

3. Let Xi be independent Γ(αi, β) random variables, i = 1, 2. Then X1 + X2 is a Γ(α1 + α2, β) random
variable.

4. Let Xi be independent Cau(µi, σi) random variables, i = 1, 2. Then X1 +X2 is a Cau(µ1 +µ2, σ1 +σ2)
random variable.

Exercise 3.18. If X1 and X2 have joint density f(X1,X2) with respect to Lebesgue measure, then their sum
Y has density

fY (y) =
∫

f(x, y − x) dx.

Example 3.19 (Order statistics). Let X1, . . . , Xn be independent random variables with common distribution
function F . Assume F has density f with respect to Lebesgue measure. Let X(k) be the k-th smallest of
X1, . . . , Xn. (Note that the probability of a tie is zero.) To find the density of the order statistcs, note that
{X(k) ≤ x} if and only if at least k of the random variables lie in (−∞, x]. Its distribution function

F(k)(x) =
n∑

j=k

(
n

j

)
F (x)j(1− F (x))n−j

and its density

f(k)(x) = f(x)
n∑

j=k

(
j

(
n

j

)
F (x)j−1(1− F (x))n−j − (j − 1)

(
n

j + 1

)
F (x)j(1− F (x))n−j+1

)

= f(x)k
(

n

k

)
F (x)k−1(1− F (x))n−k.

Note that in the case that the random variable are U(0, 1), we have that the order statistics are beta random
variables.
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3.3 Transformations of Continuous Random Variables

For a one-to-one transformation g of a continuous random variable X, we saw how that the density of
Y = g(X) is

fY (y) = fX(g−1(y))| d

dy
g−1(y)|.

In multiple dimensions, we will need to use the Jacobian. Now, let g : S → Rn, S ⊂ Rn be one-to-one and
differentiable and write y = g(x). Then the Jacobian we need is based on the inverse function x = g−1(y).

Jg−1(y) = det


∂g−1

1 (y)
∂y1

∂g−1
1 (y)
∂y2

· · · ∂g−1
1 (y)
∂yn

∂g−1
2 (y)
∂y1

∂g−1
2 (y)
∂y2

· · · ∂g−1
2 (y)
∂yn

...
...

. . .
...

∂g−1
n (y)
∂y1

∂g−1
n (y)
∂y2

· · · ∂g−1
n (y)
∂yn


Then

fY (y) = fX(g−1(y))|Jg−1(y)|.

Example 3.20. 1. Let A be an invertible d× d matrix and define

Y = AX + b.

Then, for g(x) = Ax + b, g−1(y) = A−1(y − b), and

Jg−1(y) = A−1, and fY (y) =
1

|det(A)|
fX(A−1(y − b)).

2. Let X1 and X2 be independent Exp(1) random variables. Set

Y1 = X1 + X2, and Y2 =
X1

X1 + X2
. Then, X1 = Y1Y2, and X2 = Y1(1− Y2).

The Jacobian for g−1(y1, y2) = (y1y2, y1(1− y2)),

Jg−1(y) = det
(

y2 y1

(1− y2) −y1

)
= −y1.

Therefore,
f(Y1,Y2)(y1, y2) = y1e

−y1

on [0,∞)× [0, 1]. Thus, Y1 and Y2 are independent. Y1 is χ2
2 and Y2 is U(0, 1).

3. Let X1 and X2 be independent standard normals and define

Y1 =
X1

X2
, and Y2 = X2. Then, X1 = Y1Y2, and X2 = Y2.
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The Jacobian for g−1(y1, y2) = (y1y2, y2),

Jg−1(y) = det
(

y2 y1

0 1

)
= y2.

Therefore,

f(Y1,Y2)(y1, y2) =
1
2π

exp
−y2

2(y2
1 + 1)
2

|y2|

and

fY1(y1) =
∫ ∞

−∞
f(Y1,Y2)(y1, y2)|y2| dy2 =

1
π

∫ ∞

0

exp
−y2

2(y2
1 + 1)
2

y2 dy2

=
1
π

1
y2
1 + 1

exp
−y2

2(y2
1 + 1)
2

∣∣∣∣∞
0

=
1
π

1
y2
1 + 1

.

and Y1 is a Cauchy random variable.

Exercise 3.21. Let U1 and U2 be independent U(0, 1) random variables. Define

R =
√
−2 ln U1 and Θ = 2πU2.

Show that
X1 = R sinΘ and X2 = R cos Θ.

are independent N(0, 1) random variables.

Example 3.22. Let X1 be a standard normal random variable and let X2 be a χ2
a random variable. Assume

that X1 and X2 are independent. Then their joint density is

f(X1,X2)(x1, x2) =
1√

2πΓ(a/2)2a/2
e−x2

1/2x
a/2−1
2 e−x2/2.

A random variable T having the t distribution with a degrees of freedom is obtained by

T =
X1√
X2/a

.

To find the density of T consider the transformation

(y1, y2) = g(x1, x2) =

(
x1√
x2/a

, x2

)
.

This map is a one-to-one transformation from R× (0,∞) to R× (0,∞) with inverse

(x1, x2) = g−1(y1, y2) = (y1

√
y2/a), y2).

The Jacobian

Jg−1(y) = det
( √

y2/a y1/(2
√

y2a)
0 1

)
=
√

y2/a.
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Therefore,

f(Y1,Y2)(y1, y2) =
1√

2πΓ(a/2)2a/2
y

a/2−1
2 exp

−y2

2

(
1 +

y2
1

a

)
.

The marginal density for T is

fT (t) =
1√

2πΓ(a/2)2a/2

∫ ∞

0

y
a/2−1
2 exp

−y2

2

(
1 +

t2

a

)√
y2

a
dy2, u =

−y2

2

(
1 +

t2

a

)
=

1√
2πaΓ(a/2)2a/2

∫ ∞

0

(
2u

1 + t2/a

)a/2−1/2

e−u

(
2

1 + t2/a

)
du

=
Γ((a + 1)/2)√

2πaΓ(a/2)
1

(1 + t2/a)a/2+1/2

Exercise 3.23. Let Xi, i = 1, 2, be independent χ2
ai

random variables. Find the density with respect to
Lebesgue measure for

F =
X1/a1

X2/a2
.

Verify that this is the density of an F -distribution with parameters a1 and a2

3.4 Conditional Expectation

In this section, we shall define conditional expectation with respect to a random variable. Later, this
definition with be genrealized to conditional expectation with respect to a σ-algebra.

Definition 3.24. Let Z be an integrable random variable on (Ω,F , P ) and let X be any random variable.
The conditional expectation of Z given X, denoted E[Z|X] is the a.s. unique random variable satisfying the
following two conditions.

1. E[Z|X] is a measurable function of X.

2. E[E[Z|X]]; {X ∈ B}] = E[Y ; {X ∈ B}] for any measurable B.

The uniqueness follows from the following:
Let h1(X) and h2(X) be two candidates for E[Y |X]. Then, by property 2,

E[h1(X); {h1(X) > h2(X)}] = E[h2(X); {h1(X) > h2(X)}] = E[Y ; {h1(X) > h2(X)}].

Thus,
0 = E[h1(X)− h2(X); {h1(X) > h2(X)}].

Consequently, P{h1(X) > h2(X)} = 0. Similarly, P{h2(X) > h1(X)} = 0 and h1(X) = h2(X) a.s.

Existence follows from the Radon-Nikodym theorem. Recall from Chapter 2, that given a measure µ and
a nonnegative measurable function h, we can define a new measure ν by

ν(A) =
∫

A

h(x) µ(dx). (3.1)
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The Radon-Nikodym theorem answers the question: What conditions must we have on µ and ν so that
we can find a function h so that (3.1) holds. In the case of a discrete state space, equation (3.1) has the form

ν(A) =
∑
x∈A

h(x)µ{x}.

For the case A equals a singleton set {x̃}, this equation becomes

ν{x̃} = h(x̃)µ{x̃}.

If ν{x̃} = 0, the we can set h(x̃) = 0. Otherwise, we set

h(x̃) =
ν{x̃}
µ{x̃}

.

This choice answers the question as long as we do not divide by zero. In other words, we have the condition
that ν{x̃} > 0 implies µ{x̃} > 0. Extending this to sets in general, we must have ν(A) > 0 implies ν(A) > 0.
Stated in the contrapositive,

µ(A) = 0 implies ν(A) = 0. (3.2)

.
If any two measures µ and ν have the relationship described by (3.2), we say that ν is absolutely continuous

with respect to µ and write ν << µ.
The Radon-Nikodym theorem states that this is the appropriate condition. If ν << µ, then there exists

an integrable function h so that (3.1) holds. In general, one can construct a proof by looking at ratios
ν(A)/µ(A) for small sets that contain a given point x̃ and try to define h by shrinking these sets down to a
point. For this reason, we sometimes write

h(x̃) =
ν(dx̃)
µ(dx̃)

and call h the Radon-Nikodym derivative.
Returning the the issue of the definition of conditional expectation, assume that Z is a non-negative

random variable and consider the two measures

µ(B) = P{X ∈ B} and ν(B) = E[Z; {X ∈ B}].

Then ν << µ. Thus, by the Radon-Nikodym theorem, there exist a measurable function h so that

E[Z; {X ∈ B}] = ν(B) =
∫

B

h(x) ν(dx) = E[h(X); {X ∈ B}]

and property 2 in the definition of conditional expectation is satisfied and h(X) = E[Z|X].
For an arbitrary integrable Z, consider its positive and negative parts separately.

Often we will write h(x) = E[Z|X = x]. Then, for example

EY = E[E[Z|X]] =
∫

E[Z|X = x]ν(dx).

If X is a discrete random varible, then we have µ{x} = P{X = x}, ν{x} = E[Z; {X = x}] and

h(x) =
E[Z; {X = x}]

P{X = x}
. (3.3)
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Definition 3.25. The conditional probability P (A|X) = E[IA|X].

Exercise 3.26. A random variable is σ(X) measurable if and only if it can be written as h(X) for some
measurable function h.

Exercise 3.27. 1. E[g(X)Z|X] = g(X)E[Z|X].

2. If X and Z are independent, then E[Z|X] = EY.

3. Assume that Z is square integrable, then

E[Zg(X)] = E[E[Z|X]g(X)]

for every square integrable g(X).

We can give a Hilbert space perspective to conditional expectation by writing EX1X2 as an inner product
〈X1, X2〉. Then, the identity above becomes

〈E[Z|X], g(X)〉 = 〈Z, g(X)〉 for every g(X) ∈ L2(Ω, σ(X), P ).

Now consider L2(Ω, σ(X), P ) as a closed subspace of L2(Ω,F , P ). Then this identity implies that

E[Z|X] = ΠX(Z)

where ΠX is orthogonal projection onto L2(Ω, σ(X), P ). This can be viewed as a minimization problem

min{E(Z − h(X))2;h(X) ∈ L2(Ω, σ(X), P )}.

The unique solution occurs by taking g(X) = E[Z|X]. In statistics, this is called “least squares”.

For the case that Z = g(X, Y ) and X takes values on a discrete state space S, then by conditional
expectation property 2,

E[g(X, Y ); {X = x}] = E[E[g(X, Y )|X]; {X = x}]
= E[h(X); {X = x}]
= h(x)P{X = x}.

Thus, if P{X = x} > 0,

h(x) =
E[g(X, Y ); {X = x}]

P{X = x}
as in (3.3).

If, in addition, Y is S-valued and the pair (X, Y ) has joint density

f(X,Y )(x, y) = P{X = x, Y = y}

with respect to counting measure on S × S. Then,

E[g(X, Y ); {X = x}] =
∑
y∈S

g(x, y)f(X,Y )(x, y).
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Taking h(x) = E[g(X, Y )|X = x], and fX(x) = P{X = x}, we then have

h(x) =
∑
y∈S

g(x, y)
f(X,Y )(x, y)

fX(x)
=
∑
y∈S

g(x, y)fY |X(y|x).

Let’s see if this definition of h works more generally. Let ν1 and ν2 be σ-finite measures and consider the
case in which (X, Y ) has a density f(X,Y ) with respect to ν1 × ν2. i.e.,

P{(X, Y ) ∈ A} =
∫

A

f(X,Y )(x, y) (ν1 × ν2)(dx× dy).

Then the marginal density fX(x) =
∫

f(X,Y )(x, y) ν2(dy) and the conditional density

fY |X(y|x) =
f(X,Y )(x, y)

fX(x)
.

if fX(x) > 0 and 0 if fX(x) = 0. Set

h(x) =
∫

g(x, y)fY |X(y|x) ν2(dy).

Claim. If E|g(X, Y )| < ∞, then E[g(X, Y )|X] = h(X)

We only need to show that

E[h(X); {X ∈ B}] = E[g(X, Y ); {X ∈ B}].

Thus,

E[h(X); {X ∈ B}] =
∫

B

h(x)fX(x) ν1(dx)

=
∫

B

(
∫

g(x, y)fY |X(y|x) ν2(dy))fX(x) ν1(dx)

=
∫ ∫

g(x, y)IB(x)f(X,Y )(x, y) ν2(dy)ν1(dx)

= E[g(X, Y ); {X ∈ B}].

Definition 3.28. The conditional variance

Var(Z|X) = E[(Z − E[Z|X])2|X] = E[Z2|X]− (E[Z|X])2

and the conditional covariance

Cov(Z1, Z2|X) = E[(Z1 − E[Z1|X])(Z2 − E[Z2|X])|X] = E[Z1Z2|X]− E[Z1|X]E[Z2|X].

Exercise 3.29. 1. If (X, Y ) has joint density f(X,Y ) with respect to Lebesgue measure, then

P{Y ≤ y|X = x} = lim
h→0

P{Y ≤ y|x ≤ X ≤ x + h}.
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2. Show that E[E[Z|X]] = EZ and Var(Z) = E[Var(Z|X)] + Var(E[Z|X]).

Exercise 3.30. 1. (conditional bounded convergence theorem) Let {Zn;n ≥ 1} be a bounded sequence of
random variables that converges to Z almost surely, then

lim
n→∞

E[Zn|X] = E[Z|X].

2. (tower property) E[E[Z|X1, X2]|X2] = E[Z|X2].

Example 3.31. Let X, a Pois(λ) random variable, and Y , a Pois(µ) random variable be independent,
Then

fX+Y (z) = (fX ∗ fY )(z) =
∑

x

fX(x)fY (z − x) =
z∑

x=0

λx

x!
e−λ µz−x

(z − x)!
e−µ

=
1
z!

e−(λ+µ)
z∑

x=0

z!
x!(z − x)!

λxµz−x =
(λ + µ)z

z!
e−(λ+µ),

and Z = X + Y is a Pois(λ + µ) random variable. Also

fX|Z(x|z) =
f(X,Z)(x, z)

fZ(z)
=

f(X,Y )(x, z − x)
fZ(z)

=
fX(x)fY (z − x)

fZ(z)

=
(

λx

x!
e−λ µz−x

(z − x)!
e−µ

)/( (λ + µ)z

z!
e−(λ+µ)

)
=

(
z

x

)(
λ

λ + µ

)x(
µ

λ + µ

)(z−x)

.

the distribution of a Bin(z, λ/(λ + µ) random variable.

Example 3.32. Let (X, Y ) have joint density f(X,Y )(x, y) = e−y, 0 < x < y < ∞ with respect to Lebesgue
measure in the plane. Then the marginal density

fX(x) =
∫ ∞

−∞
f(X,Y )(x, y) dy =

∫ ∞

x

e−y dy = e−x.

Thus, X is an Exp(1) random variable. The conditional density is

fY |X(y|x) =
{

e−(y−x), if x < y,
0 , if y ≥ x.

Thus, given that X = x, Y is equal to x plus an Exp(1) random variable. Thus, E[Y |X] = X + 1
andVar(Y |X) = 1. Consequently, EY = 2 and

Cov(X, Y ) = E[XY ]− (EX · EY ) = E[E[XY |X]]− (1 · 2)
= E[XE[Y |X]]− 2 = E[X(X + 1)]− 2 = E[X2] + EX − 2 = 2 + 1− 2 = 1.

Exercise 3.33. 1. Let Sm and Sn be independent Bin(m, p) and Bin(n, p) random variables. Find
P{Sm + Sn = y|Sm = x} and P{Sm = x|sm + Sn = y}.
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2. Let X1 be uniformly distributed on [0, 1] and X2 be uniformly distributed on [0, X2]. Find the density
of X2. Find the mean and variance of X2 directly and by using the conditional mean and variance
formula.

3. Let X be Pois(λ) random variable and let Y be a Bin(X, p) random variable. Find the distribution of
Y .

4. Consider the independent random variables with common continuous distribution F . Show that

(a) P{X(n) ≤ xn, X(1) > x1} = (F (xn)− F (x1)), for x1 < xn.

(b) P{X(1) > x1|X(n) = xn} = ((F (xn)− F (x1))/F (xn)) , for x1 < xn.

(c)

P{X1 ≤ x|X(n) = xn} =
n− 1

n

F (x)
F (xn)

n−1

, for x ≤ xn.

and 1 for x > xn.

(d)

E[X1|X(n)] =
n− 1

n

1
F (X(n))

∫ X(n)

−∞
x dF (x) +

X(n)

n
.

5. Consider the density f(X1,X2)(x1, x2)

=
1

2πσ1σ2

√
1− ρ2

exp
−1

(1− ρ2)

((
x1 − µ1

σ1

)2

− 2ρ

(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(

x2 − µ2

σ2

)2
)

.

Show that

(a) f(X1,X2) is a probability density function.

(b) Xi is N(µi, σ
2
i ), i = 1, 2.

(c) ρ is the correlation of X1 and X2.

(d) Find fX2|X1 .

(e) Show that E[X2|X1] = µ2 + ρσ2
σ1

(X1 − µ1).

3.5 Normal Random Variables

Definition 3.34 (multivariate normal random variables). Let Q be a d× d symmetric matrix and let

q(x) = xQxT =
d∑

i=1

d∑
j=1

xiqijxj

be the associated quadratic form. A normal random variable X on Rd is defined to be one that has density

fX(x) ∝ exp (−q(x− µ)/2) .
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For the case d = 2 we have seen that

Q =
1

1− ρ2

(
1

σ2
1

−ρ
σ1σ2

−ρ
σ1σ2

1
σ2
2

)
.

Exercise 3.35. For the quadratic form above, Q is the inverse of the variance matrix Var(X).

We now look at some of the properties of normal random variables.

• The collection of normal random variables is closed under invertible affine transformations.

If Y = X − a, then Y is also normal. Call a normal random variable centered if µ = 0.

Let A be a non-singular matrix and let X be a centered normal. If Y = XA then,

fY (y) ∝ exp
(
−yA−1Q(A−1)T yT /2

)
.

Note that A−1Q(A−1)T is symmetric and consequently, Y is normal.

• The diagonal elements of Q are non-zero.

For example, if qdd = 0, then we have that the marginal density

fXd
(xd) ∝ exp(−axd + b),

for some a, b ∈ R. Thus,
∫

fXn
(xn) dxn = ∞ and fXn

cannot be a density.

• All marginal densities of a normal density are normal.

Consider the invertible transformation

y1 = x1, . . . , yd−1 = xd−1, yd = q1dx1 + · · ·+ qddxd.

(We can solve for xd because qdd 6= 0.) Then

A−1 =


1 0 · · · −q1d/qdd

0 1 · · · −q2d/qdd

...
...

. . .
...

0 0 · · · 1/qdd

 .

Write Q̃ = A−1Q(A−1)T . Then

q̃dd =
d∑

j,k=1

A−1
dj qjkA−1

dk =
1

qdd
qdd

1
qdd

=
1

qdd

and in addition, note that for i 6= d,

q̃di =
d∑

j,k=1

A−1
dj qjkA−1

ik =
1

qdd

d∑
k=1

qdkA−1
ik =

1
qdd

(
qdi + qdd

(
− qdi

qdd

))
= 0.
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Consequently,

q̃(y) =
1

qdd
y2

d + q̃(d−1)(y)

where q̃(d−1) is a quadratic form on y1, . . . , yd−1. Note that

(X1, . . . , Xd−1) = (Y1, . . . , Yd−1)

to see that it is a normal random variable.

Noting that qdd > 0, an easy induction argument yields:

• There exists a matrix C with positive determinant such that Z̃ = XC in which the components Z̃i are
independent normal random variables.

• Conditional expectations are linear functions.

0 = E[Yd|Y1, . . . , Yd−1] = E[q1dX1 + · · ·+ qddXd|X1, . . . , Xd−1]

or
E[Xd|X1, . . . , Xd−1] =

1
qdd

q1dX1 + · · ·+ qd,d−1Xd−1.

Thus, the Hilbert space minimization problem for E[Xd|X1, . . . , Xd−1] reduces to the multidimensional
calculus problem for the coefficients of linear function of X1, . . . , Xd−1. This is the basis of least squares
linear regression for normal random variables.

• The quadratic form Q is the inverse of the variance matrix Var(X).

Set
D = Var(Z̃) = CT Var(X)C,

a diagonal matrix with diagonal elements Var(Z̃i) = σ2
i . Thus the quadratic form for the density of Z

is 
1/σ2

1 0 · · · 0
0 1/σ2

2 · · · 0
...

...
. . . 0

0 0 · · · 1/σ2
d

 = D−1.

Write xC = z, then the density

fX(x) = |det(C)|fZ̃(Cx) ∝ exp(−1
2
xT CT D−1Cx).

and
Var(X) = (C−1)T DC−1 = Q−1.

Now write

Zi =
Z̃i − µi

σi
.

Thus,
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• Every normal random variable is an affine transformation of the vector-valued random variable whose
components are independent standard normal random variables.

We can use this to extend the definition of normal to X is a d-dimensional normal random variable if
and only if

X = ZA + c

for some constant c ∈ Rd, d×r matrix A and Z, a collection of r independent standard normal random
variables.

By checking the 2× 2 case, we find that:

• Two normal random variables (X1, X2) are independent if and only if Cov(X1, X2) = 0, that is, if and
only if X1 and X2 are uncorrelated.

We now relate this to the t-distribution.

For independent N(µ, σ2) random variables X1, · · · , Xn write

X̄ =
1
n

(X1 + · · ·+ Xn).

Then, Xi − X̄ and X̄ together form a bivariate normal random variable. To see that they are independent
note that

Cov(Xi − X̄, X̄) = Cov(Xi, X̄)− Cov(X̄, X̄) =
σ2

n
− σ2

n
= 0.

Thus,

X̄, and S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

are independent.

Exercise 3.36. Call S2 the sample variance.

1. Check that S2 is unbiased: For Xi independent N(µ, σ2) random variables, ES2 = σ2.

2. Define the T statistic to be

T =
X̄ − µ

S/
√

n
.

Show that the T statistic is invariant under an affine transformation of the Xi’s.

3. If the Xi’s are N(0, 1) then (n− 1)S2 is χ2
n−1.
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4 Notions of Convergence

In this chapter, we shall introduce a variety of modes of convergence for a sequence of random variables.
The relationship among the modes of convergence is sometimes established using some of the inequalities
established in the next section.

4.1 Inequalities

Theorem 4.1 (Chebyshev’s inequality). Let g : R → [0.∞) be a measurable function, and set mA =
inf{g(x) : x ∈ A}. Then

mAP{X ∈ A} ≤ E[g(X); {X ∈ A}] ≤ Eg(X).

Proof. Note that
mAI{X∈A} ≤ g(X)I{X∈A} ≤ g(X).

Now take expectations.

One typical choice is to take g increasing, and A = (a,∞), then

P{g(X) > a} ≤ Eg(X)
g(a)

.

For example,

P{|Y − µY | > a} = P{(Y − µY )2 > a2} ≤ Var(Y )
a2

.

Exercise 4.2. 1. Prove Cantelli’s inequality.

P{X − µ > a} ≤ Var(X)
Var(X) + a2

.

2. Choose X so that its moment generating function is finite in some open interval I containing 0. Then

P{X > a} = P{eθX > eθa} ≤ m(θ)
eθa

, θ > 0.

Thus,
lnP{X > a} ≤ inf{lnm(θ)− θa; θ ∈ (I ∩ (0,∞))}.

Exercise 4.3. Use the inequality above to find upper bounds for P{X > a} where X is normal, Poisson,
binomial.

Definition 4.4. For an open and convex set D ∈ Rd, call a function φ : D → R convex if for every pair of
points x, x̃ ∈ S and every α ∈ [0, 1]

φ(αx + (1− α)x̃) ≤ αφ(x) + (1− α)φ(x̃).

Exercise 4.5. Let D be convex. Then φ is convex function if and only if the set {(x, y); y ≥ φ(x)} is a
convex set.
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The definition of φ being a convex function is equivalent to the supporting hyperplane condition. For
every x̃ ∈ D, there exist a linear operator A(x) : Rd → R so that

φ(x) ≥ φ(x̃) + A(x̃)(x− x̃).

If the choice of A(x̃) is unique, then it is called the tangent hyperplane.

Theorem 4.6 (Jensen’s inequality). Let φ be the convex function described above and let X be an D-valued
random variable chosen so that each component is integrable and that E|φ(X)| < ∞. Then

Eφ(X) ≥ φ(EX).

Proof. Let x̃ = EX, then
φ(X(ω)) ≥ φ(EX) + A(EX)(X(ω)− EX).

Now, take expectations and note that E[A(EX)(X − EX)] = 0.

Exercise 4.7. 1. Show that for φ convex, for {x1, . . . , xk} ⊂ D, a convex subset of Rn and for αi ≥
0, i = 1, · · · , k with

∑k
i=1 αi = 1,

φ(
k∑

i=1

αixi) ≤
k∑

i=1

φ(αixi).

2. Prove the conditional Jensen’s inequaltiy: Let φ be the convex function described above and let Y be an
D-valued random variable chosen so that each component is integrable and that E|φ(X)| < ∞. Then
E[φ(Y )|X] ≥ φ(E[Y |X]).

3. Let d = 2, then show that a function φ that has continuous second derivatives is convex if

∂2φ

∂x2
1

(x1, x2) ≥ 0,
∂2φ

∂x2
2

(x1, x2) ≥ 0,
∂2φ

∂x2
1

(x1, x2)
∂2φ

∂x2
2

(x1, x2) ≥
∂2φ

∂x1∂x2
(x1, x2)2.

4. Call Lp the space of measurable functions Z so that |Z|p is integrable. If 1 ≤ q < p < ∞, then Lp is
contained in Lq. In particular show that the function

n(p) = E[|Z|p]1/p

is increasing in p and has limit ess sup |Z| where ess supX = inf{x : P{X ≤ x} = 1}.

5. (Hölder’s inequality). Let X and Y be non-negative random variables and show that E[X1/pY 1/q] ≤
(EX)1/p(EY )1/q, p−1 + q−1 = 1.

6. (Minkowski’s inequality). Let X and Y be non-negative random variables and let p ≥ 1. Show that
E[(X1/p + Y 1/p)p] ≤ ((EX)1/p + (EY )1/p)p. Use this to show that ||Z||p = E[|Z|p]1/p is a norm.
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4.2 Modes of Convergence

Definition 4.8. Let X, X1, X2, · · · be a sequence of random variables taking values in a metric space S with
metric d.

1. We say that Xn converges to X almost surely (Xn →a.s. X) if

lim
n→∞

Xn = X a.s..

2. We say that Xn converges to X in Lp, p > 0, (Xn →Lp

X) if,

lim
n→∞

E[d(Xn, X)p] = 0.

3. We say that Xn converges to X in probability (Xn →P X) if, for every ε > 0,

lim
n→∞

P{d(Xn, X) > ε} = 0.

4. We say that Xn converges to X in distribution (Xn →D X) if, for every bounded continuous h : S → R.

lim
n→∞

Eh(Xn) = Eh(X).

Convergence in distribution differs from the other modes of convergence in that it is based not on a
direct comparison of the random variables Xn with X but rather on a comparision of the distributions
µn(A) = P{Xn ∈ A} and µ(A) = P{X ∈ A}. Using the change of variables formula, convergence in
distribution can be written

lim
n→∞

∫
h dµn =

∫
h dµ.

Thus, it investigates the behavior of the distributions {µn : n ≥ 1} using the continuous bounded functions
as a class of test functions.

Exercise 4.9. 1. Xn →a.s. X implies Xn →P X.

(Hint: Almost sure convergence is the same as P{d(Xn, X) > ε i.o.} = 0.)

2. Xn →Lp

X implies Xn →P X.

3. Let p > q, then Xn →Lp

X then Xn →Lq

X.

Exercise 4.10. Let g : S → R be continuous. Then

1. Xn →a.s. X implies g(Xn) →a.s. g(X)

2. Xn →D X implies g(Xn) →D g(X)

3. Xn →a.s. X implies Xn →D X.

We would like to show that the same conclusion hold for convergence in probability.
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Theorem 4.11 (first Borel-Cantelli lemma). Let {An : n ≥ 1} ⊂ F , if

∞∑
n=1

P (An) < ∞ then P (lim sup
n→∞

An) = 0.

Proof. For any m ∈ N

P (lim sup
n→∞

An) ≤ P (
∞⋃

n=m

An) ≤
∞∑

n=m

P (An).

Let ε > 0, then, by hypothesis, this sum can be made to be smaller than ε with an appropriate choice of
m.

Theorem 4.12. If Xn →P X, then there exists a subsequence {nk : k ≥ 1} so that Xnk
→a. s. X.

Proof. Let ε > 0. Choose nk > nk−1 so that

P{d(Xnk
, X) > 2−k} < 2−k.

Then, by the first Borel-Cantelli lemma,

P{d(Xnk
, X) > 2−k i.o.} = 0.

The theorem follows upon noting that {d(Xnk
, X) > ε i.o.} ⊂ {d(Xnk

, X) > 2−k i.o.}.

Exercise 4.13. Let {an;n ≥ 1} be a sequence of real numbers. Then

lim
n→∞

an = L

if and only if for every subsequence of {an;n ≥ 1} there exist a further subsequence that converges to L.

Theorem 4.14. Let g : S → R be continuous. Then Xn →P X implies g(Xn) →P g(X).

Proof. Any subsequence {Xnk
; k ≥ 1} converges to X in probability. Thus, by the theorem above, there

exists a further subsequence {Xnk(m);m ≥ 1} so that Xnk(m) →a.s. X. Then g(Xnk(m)) →a.s. g(X) and
consequently g(Xnk(m)) →P g(X).

If we identify versions of a random variable, then we have the Lp-norm for real valued random variables

||X||p = E[|X|p]1/p.

The triangle inequality is given by Minkowski’s inequality. This gives rise to a metric via ρp(X, Y ) =
||X − Y ||p.

Convergence in probability is also a metric convergence.

Theorem 4.15. Let X, Y be random variables with values in a metric space (S, d) and define

ρ0(X, Y ) = inf{ε > 0 : P{d(X, Y ) > ε} < ε}.

Then ρ0 is a metric.
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Proof. If ρ0(X, Y ) > 0, then X 6= Y .

P{d(X, X) > ε} = 0 < ε.

Thus, ρ0(X, X) = 0.
Because d is symmetric, so is ρ0. To establish the triangle inequality, note that

{d(X, Y ) ≤ ε1} ∩ {d(Y, Z) ≤ ε2} ⊂ {d(X, Z) ≤ ε1 + ε2}

or, by writing the complements,

{d(X, Z) > ε1 + ε2} ⊂ {d(X, Y ) > ε1} ∪ {d(Y,Z) > ε2}.

Thus,
P{d(X, Z) > ε1 + ε2} ≤ P{d(X, Y ) > ε1}+ P{d(Y, Z) > ε2}.

So, if ε1 > ρ0(X, Y ) and ε2 > ρ0(Y, Z) then

P{d(X, Y ) > ε1} < ε1 and P{d(Y, Z) > ε2} < ε2

then
P{d(X, Z) > ε1 + ε2} < ε1 + ε2.

and, consequently, ρ0(X, Z) ≤ ε1 + ε2. Thus,

ρ0(X, Z) ≤ inf{ε1 + ε2; ε1 > ρ0(X, Y ), ε2 > ρ0(Y,Z)} = ρ0(X, Y ) + ρ0(Y, Z).

Exercise 4.16. 1. Xn →P X if and only if limn→∞ ρ0(Xn, X) = 0.

2. Let c > 0. Then Xn →P X if and only if

lim
n→∞

E[max{d(Xn, X), c}] = 0.

We shall explore more relationships in the different modes of convergence using the tools developed in
the next section.

4.3 Uniform Integrability

Let {Xk, k ≥ 1} be a sequence of random variables converging to X almost surely. Then by the bounded
convergence theorem, we have for each fixed n that

E[|X|; {X < n}] = lim
k→∞

E[|Xk; {Xk < n}].

By the dominated convergence theorem,

E|X| = lim
n→∞

E[|X|; {X < n} = lim
n→∞

lim
k→∞

E[|Xk|; {Xk < n}.
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If we had a sufficient condition to reverse the order of the double limit, then we would have, again, by the
dominated convergence theorem that

E|X| = lim
k→∞

lim
n→∞

E[|Xk|; {Xk < n}] = lim
k→∞

E[|Xk|].

In other words, we would have convergence of the expectations. The uniformity we require to reverse this
order is the subject of this section.

Definition 4.17. A collection of real-valued random variables {Xλ;λ ∈ Λ} is uniformly integrable if

1. supλ∈Λ E|Xλ| < ∞, and

2. for every ε > 0, there exists a δ > 0 such that for every λ,

P (Aλ) < δ implies |E[Xλ;Aλ]| < ε.

Exercise 4.18. The criterion above is equivalent to the seemingly stronger condition:

P (Aλ) < δ implies E[|Xλ|;Aλ] < ε.

Consequently, {Xλ : λ ∈ Λ} is uniformly integrable if and only if {|Xλ| : λ ∈ Λ} is uniformly integrable.

Theorem 4.19. The following are equivalent:

1. {Xλ : λ ∈ Λ} is uniformly integrable.

2. limn→∞ supλ∈Λ E[|Xλ|; {|Xλ| > n}] = 0.

3. limn→∞ supλ∈Λ E[|Xλ| −min{n, |Xλ|}] = 0.

4. There exists an increasing convex function φ : [0,∞) → R such that limx→∞ φ(x)/x = ∞, and

sup
λ∈Λ

E[φ(|Xλ|)] < ∞.

Proof. (1 → 2) Let ε > 0 and choose δ as defined in the exercise. Set M = supλ E|Xλ|, choose n > M/δ and
define Aλ = {|Xλ| > n}. Then by Chebyshev’s inequality,

P (Aλ) ≤ 1
n

E|Xλ| ≤
M

n
< δ.

(2 → 3) Note that,
nP{|Xλ| > n} ≤ E[|Xλ|; {|Xλ| > n}]

Therefore,

|E[|Xλ| −min{n, |Xλ|}]| = |E[|Xλ| − n; |Xλ| > n]|
= |E[|Xλ|; |Xλ| > n]| − nP{|Xλ| > n}|
≤ 2E[|Xλ|; {|Xλ| > n}].
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(3 → 1) If n is sufficiently large,

M = sup
λ∈Λ

E[|Xλ| −min{n, |Xλ|}] < ∞

and consequently
sup
λ∈Λ

E|Xλ| ≤ M + n < ∞.

If P (Aλ) < 1/n2, then

E[|Xλ|;Aλ] ≤ E[|Xλ|−min{n, |Xλ|}]+n;Aλ] ≤ E[|Xλ|−min{n, |Xλ|}]+nP (Aλ) ≤ E[|Xλ|−min{n, |Xλ|}]+
1
n

.

For ε > 0, choose n so that the last term is less than ε, then choose δ < 1/n2.
(4 → 2) By subracting a constant, we can assume that φ(0) = 0. Then, by the convexity of φ, φ(x)/x is

increasing. Let ε > 0 and let M = supλ∈Λ E[φ(|Xλ|)]. Choose N so that

φ(n)
n

>
M

ε
whenever n ≥ N.

If x > n,
φ(x)

x
≥ φ(n)

n
, x ≤ nφ(x)

φ(n)
.

Therefore,

E[|Xλ|; {|Xλ| > n}] ≤ nE[φ(|Xλ|); |Xλ| > n]
φ(n)

≤ nE[φ(|Xλ|)]
φ(n)

≤ nM

φ(n)
< ε.

(2 → 4) Choose a decreasing sequence {ak : k ≥ 1} of positive numbers so that
∑∞

k=1 kak < ∞. By 2,
we can find a strictly increasing sequence {nk : k ≥ 1} satisfying n0 = 0.

sup
λ∈Λ

E[|Xλ|; {|Xλ| > nk}] ≤ ak.

Define φ by φ(0) = 0, φ′(0) = 0 on [n0, n1) and

φ′(x) = k − nk+1 − x

nk+1 − nk
, x ∈ [nk, nk+1).

On this interval, φ′ increases from k − 1 to k.
Because φ is convex, the slope of the tangent at x is greater than the slope of the secant line between

(x, φ(x)) and (0, 0), i.e,
φ(x)

x
≤ φ′(x) ≤ k for x ∈ [nk, nk+1).

Thus,
φ(x) ≤ kx for x ∈ [nk, nk+1).

Consequently,

sup
λ∈Λ

E[φ(|Xλ|)] = sup
λ∈Λ

∞∑
k=1

E[φ(|Xλ|);nk+1 ≥ |Xλ| > nk] ≤ sup
λ∈Λ

∞∑
k=1

kE[|Xλ|; {|Xλ| ≥ nk}] < ∞.
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Exercise 4.20. 1. If a collection of random variables is bounded in Lp, p > 1, then it is uniformly
integrable.

2. A finite collection of integrable random variables is uniformly integrable.

3. If |Xλ| ≤ Yλ and {Yλ;λ ∈ Λ} is uniformly integrable, then so is {Xλ;λ ∈ Λ}.

4. If {Xλ : λ ∈ Λ} and {Yλ : λ ∈ Λ} are uniformly integrable, then so is {Xλ + Yλ : λ ∈ Λ}.

5. Assume that Y is integrable and that {Xλ;λ ∈ Λ} form a collection of real valued random variables,
then {E[Y |Xλ] : λ ∈ Λ} is uniformly integrable.

6. Assume that {Xn : n ≥ 1} is a uniformly integrable sequence and define X̄n = (X1 + · · ·+Xn)/n, then
{X̄n : n ≥ 1} is a uniformly integrable sequence

Theorem 4.21. If Xk →a.s. X and {Xk; k ≥ 1} is uniformly integrable, then limk→∞ EXk = EX.

Proof. Let ε > 0 and write

(E|Xk| − E|X|) = (E[|Xk| −max{|Xk|, n}]
−E[|X| −max{|X|, n}])
+(E[max{|Xk|, n}]− E[max{|X|, n}]).

If {Xk; k ≥ 1} is uniformly integrable, then by the appropriate choice on N , the first term on the right can
be made to have absolutely value less than ε/3 uniformly in k for all n ≥ N . The same holds for the second
term by the integrability of X. Note that the function f(x) = max{|x|, n} is continuous and bounded and
therefore, because almost sure convergence implies convergence in distribution, the last pair of terms can be
made to have absolutely value less than ε/3 for k sufficiently large. This proves that limn→∞ E|Xn| = E|X|.

Now, the theorem follows from the dominated convergence theorem.

Corollary 4.22. If Xk →a.s. X and {Xk; k ≥ 1} is uniformly integrable, then limk→∞ E|Xk −X| = 0.

Proof. Use the facts that |Xk − X| →a.s. 0, and {|Xk − X|; k ≥ 1} is uniformly integrable in the theorem
above.

Theorem 4.23. If the Xk are integrable, Xk →D X and limk→∞ E|Xk| = E|X|, then {Xk; k ≥ 1} is
uniformly integrable.

Proof. Note that
lim

k→∞
E[|Xk| −min{|Xk|, n}] = E[|X| −min{|X|, n}].

Choose N0 so that the right side is less than ε/2 for all n ≥ N0. Now choose K so that |E[|Xk| −
min{|Xk|, n}]| < ε for all k > K and n ≥ N0. Because the finite sequence of random variables {X1, . . . , XK}
is uniformly integrable, we can choose N1 so that

E[|Xk| −min{|Xk|, n}] < ε

for n ≥ N1 and k < K. Finally take N = max{N0, N1}.

Taken together, for a sequence {Xn : n ≥ 1} of integrable real valued random variables satisfying
Xn →a.s. X, the following conditions are equivalent:
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1. {Xn : n ≥ 1} is uniformly integrable.

2. E|X| < ∞ and Xn →L1
X.

3. limn→∞ E|Xn| = E|X|.
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5 Laws of Large Numbers

Definition 5.1. A stochastic process X (or a random process, or simply a process) with index set Λ and a
measurable state space (S,B) defined on a probability space (Ω,F , P ) is a function

X : Λ× Ω → S

such that for each λ ∈ Λ,
X(λ, ·) : Ω → S

is an S-valued random variable.

Note that Λ is not given the structure of a measure space. In particular, it is not necessarily the case that
X is measurable. However, if Λ is countable and has the power set as its σ-algebra, then X is automatically
measurable.

X(λ, ·) is variously written X(λ) or Xλ. Throughout, we shall assume that S is a metric space with
metric d.

Definition 5.2. A realization of X or a sample path for X is the function

X(·, ω0) : Λ → S for some ω0 ∈ Ω.

Typically, for the processes we study Λ will be the natural numbers, and [0,∞). Occasionally, Λ will be
the integers or the real numbers. In the case that Λ is a subset of a multi-dimensional vector space, we often
call X a random field.

The laws of large numbers state that somehow a statistical average

1
n

n∑
j=1

Xj

is near their common mean value. If near is measured in the almost sure sense, then this is called a strong
law. Otherwise, this law is called a weak law.

In order for us to know that the stong laws have content, we must know when there is a probability
measure that supports, in an appropriate way, the distribution of a sequence of random variable, X1, X2, . . ..
That is the topic of the next section.

5.1 Product Topology

A function
x : Λ → S

can also be considered as a point in a product space,

x = {xλ : λ ∈ Λ} ∈
∏
λ∈Λ

Sλ.

with Sλ = S for each λ ∈ Λ.
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One of simplest questions to ask of this set is to give its value for the λ0 coordinate. That is, to evaluate
the function

πλ0(x) = xλ0 .

In addition, we will ask that this evaluation function πλ0 be continuous. Thus, we would like to place a
topology on

∏
λ∈Λ Sλ to accomodate this. To be precise, let Oλ be the open subsets of Sλ. We want

π−1
λ (U) to be an open set for any U ∈ Oλ

Let F ⊂ Λ be a finite subset, Uλ ∈ Oλ and πF :
∏

λ∈Λ Sλ →
∏

λ∈F Sλ evaluation on the coordinates in
F . Then, the topology on

∏
λ∈Λ Sλ must contain

π−1
F (

∏
λ∈F

Uλ) =
⋂

λ∈F

π−1
λ (Uλ) = {x : xλ ∈ Uλ for λ ∈ F} =

∏
λ∈Λ

Uλ

where Uλ ∈ Oλ for all λ ∈ Λ and Uλ = Sλ for all λ /∈ F .

This collection
Q = {

∏
λ∈Λ

Uλ : Uλ ∈ Oλ for all λ ∈ Λ, Uλ = Sλ for all λ /∈ F}.

forms a basis for the product topology on
∏

λ∈Λ S. Thus, every open set in the product topology is the
arbitrary union of open sets in Q. From this we can define the Borel σ-algebra as σ(Q).

Note that Q is closed under the finite union of sets. Thus, the collection Q̃ obtained by replacing the
open sets above in Sλ with measurable sets in Sλ is an algebra. Such a set

{x : xλ1 ∈ B1, . . . , xλn
∈ Bn}, Bi ∈ B(Sλi

), F = {λ1. . . . , λn},

is called an F -cylinder set or a finite dimensional set having dimension |F | = n. Note that if F ⊂ F̃ , then
any F -cylinder set is also an F̃ -cylinder set.

5.2 Daniell-Kolmogorov Extension Theorem

The Daniell-Kolmogorov extension theorem is the precise articulation of the statement: “The finite dimen-
sional distributions determine the distribution of the process.”

Theorem 5.3 (Daniell-Kolmogorov Extension). Let E be an algebra of cylinder sets on
∏

λ∈Λ Sλ. For each
finite subset F ⊂ Λ, let RF be a countably additive set function on πF (E), a collection of subsets of

∏
λ∈F Sλ

and assume that the collection of RF satisfies the compatibility condition:
For any F -cylinder set E, and any F̃ ⊃ F ,

RF (πF (E)) = RF̃ (πF̃ (E))

Then there exists a unique measure P on (
∏

λ∈Λ Sλ, σ(E)) so that for any F cylinder set E,

P (E) = RF (πF (E)).

53



Proof. The compatibility condition guarantees us that P is defined in E . To prove that P is countably
additive, it suffices to show for every decreasing sequence {Cn : n ≥ 1} ⊂ E that limn→∞ Cn = ∅ implies

lim
n→∞

P (Cn) = 0.

We show the contrapositive by showing that

lim
n→∞

P (Cn) = ε > 0

implies limn→∞ Cn 6= ∅

Each RF can be extended to a unique probability measure PF on σ(π(E)). Note that because the Cn

are decreasing, they can be viewed as cylinder sets of nondecreasing dimension. Thus, by perhaps repeating
some events or by viewing an event Cn as a higher dimensional cylinder set, we can assume that Cn is an
Fn-cylinder set with Fn = {λ1, . . . , λn}, i.e.,

Cn = {x : xλ1 ∈ C̃1,n, . . . , xλn ∈ C̃n,n}.

Define

Yn,n(xλ1 , . . . , xλn
) = ICn

(x) =
n∏

k=1

IC̃k,n
(xλk

)

and for m < n, use the probability PFn
to take the conditional expectation over the first m coordinates to

define

Ym,n(xλ1 , . . . , xλm
) = EFn

[Yn,n(xλ1 , . . . , xλn
)|xλ1 , . . . , xλm

].

Use the tower property to obtain the identity

Ym−1,n(xλ1 , . . . , xλm−1) = EFn
[Yn,n(xλ1 , . . . , xλn

)|xλ1 , . . . , xλm−1 ]
= EFn

[EFn
[Yn,n(xλ1 , . . . , xλn

)|xλ1 , . . . , xλm
]|xλ1 , . . . , xλm−1 ]

= EFn
[Ym,n(xλ1 , . . . , xλm

)|xλ1 , . . . , xλm−1 ]

Conditional expectation over none of the coordinates yields Y0,n = P (Cn).
Now, note that C̃k,n+1 ⊂ C̃k,n. Consequently,

Ym,n+1(xλ1 , . . . , xλm
) = EFn+1 [

n+1∏
k=1

IC̃k,n+1
(xλk

)|xλ1 , . . . , xλm
] (5.1)

≤ EFn+1 [
n∏

k=1

IC̃k,n
(xλk

)|xλ1 , . . . , xλm
]

= EFn [
n∏

k=1

IC̃k,n
(xλk

)|xλ1 , . . . , xλm ]

= Ym,n(xλ1 , . . . , xλm
)

The compatible condition allow us to change the probability from PFn+1 to PFn
in the second to last

inequality.
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Therefore, this sequence, decreasing in n for each value of (xλ1 , . . . , xλm) has a limit,

Ym(xλ1 , . . . , xλm) = lim
n→∞

Ym,n(xλ1 , . . . , xλm).

Now apply the conditional bounded convergence theorem to (5.1) with n = m to obtain

Ym−1(xλ1 , . . . , xλm−1) = EFm [Ym(xλ1 , . . . , xλm)|xλ1 , . . . , xλm−1 ]. (5.2)

The random variable Ym(xλ1 , . . . , xλm
) cannot be for all values strictly below Ym−1(xλ1 , . . . , xλm−1), its

conditional mean. Therefore, identity (5.2) cannot hold unless, for every choice of (xλ1 , . . . , xλm−1), there
exists xλm

so that
Ym(xλ1 , . . . , xλm−1 , xλm

) ≥ Ym−1(xλ1 , . . . , xλm−1).

Now, choose a sequence {x∗λm
: m ≥ 1} for which this inequality holds and choose x∗ ∈

∏
λ∈Λ Sλ with λm-th

coordinate equal to x∗λm
. Then,

ICn(x∗) = Yn,n(x∗λ1
, . . . , x∗λn

) ≥ Yn(x∗λ1
, . . . , x∗λn

) ≥ Y0 = lim
n→∞

P (Cn) > 0.

Therefore, ICn(x∗) = 1 and x∗ ∈ Cn for every n. Consequently, limn→∞ Cn 6= ∅.

Exercise 5.4. Consider the Sλ-valued random variables Xλ with distribution νλ. Then the case of indepen-
dent random variable on the product space is obtained by taking

RF =
∏
λ∈F

νλ.

Check that the conditions of the Daniell-Kolmogorov extension theorem are satisfied.

In addition, we know have:

Theorem 5.5. Let {Xλ;λ ∈ Λ} to be independent random variable. Write Λ = Λ1 ∪ Λ2, with Λ1 ∩ Λ2 = ∅,
then

F1 = σ{Xλ : λ ∈ Λ1} and F2 = σ{Xλ : λ ∈ Λ2}

are independent.

This removes the restriction that Λ be finite. With the product topology on
∏

λ∈Λ Sλ, we see that this
improved theorem holds with the same proof.

Definition 5.6 (canonical space). The distribution ν of any S-valued random variable can be realized by
having the probability space be (S,B, ν) and the random variable be the x variable on S. This is called the
canonical space.

Similarly, the Daniell-Kolmogorov extension theorem finds a measure on the canonical space SΛ so that
the random process is just the variable x.

For a countable Λ, this is generally satisfactory. For example, in the strong law of large numbers, we
have that

1
n

n∑
k=1

Xk
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is measurable. However, for Λ = [0,∞), the corresponding limit of averages

1
N

∫ N

0

Xλ dλ

is not necessarily measurable. Consequently, we will look to place the probability for the stochastic process
on a space of continuous fuunctions or right continuous functions to show that the sample paths have some
regularity.

5.3 Weak Laws of Large Numbers

We begin with an L2-weak law.

Theorem 5.7. Assume that X1, X2, . . . for a sequence of real-valued uncorrelated random variable with
common mean µ. Futher assume that their variances are bounded by some constant C. Write

Sn = X1 + · · ·+ Xn.

Then
1
n

Sn →L2
µ.

Proof. Note that E[Sn/n] = µ. Then

E[(
1
n

Sn − µ)2] = Var(
1
n

Sn) =
1
n2

(Var(X1) + · · ·+ Var(Xn)) ≤ 1
n2

Cn.

Now, let n →∞

Because L2 convergence implies convergence in probability, we have, in addition,

1
n

Sn →P µ.

Note that this result does not require the Daniell-Kolmogorov extension theorem. For each n, we can
evaluate the the variance of Sn on a probability space that contains the random variables (X1, . . . , Xn).

Many of the classical limit theorems begin with triangular arrays, a doubly indexed collection

{Xn,k; 1 ≤ n, 1 ≤ k ≤ kn}.

For the classical laws of large numbers, Xnk = Xk/n and kn = n.

Exercise 5.8. For the triangular array {Xn,k; 1 ≤ n, 1 ≤ k ≤ kn}. Let Sn = Xn,1 + · · ·+ Xn,kn
be the n-th

row rum. Assume that ESn = µn and that σ2
n = Var(Sn). If

σ2
n

b2
n

→ 0 then
Sn − µn

bn
→L2

0.
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Example 5.9. 1. (Coupon Collectors Problem) Let Y1, Y2, . . ., be independent random variables uni-
formly distributed on {1, 2, . . . , n} (sampling with replacement). Define the random sequence Tn,k to be
minimum time m such that the cardinality of the range of (Y1, . . . , Ym) is k. Thus, Tn,0 = 0. Define
the triangular array

Xn,k = Tn,k − Tn,k−1, k = 1, . . . , n.

For each n, Xk,n − 1 are independent Geo(1− (k − 1)/n) random variables. Therefore

EXn,k = (1− k − 1
n

)−1 =
n

n− k − 1
, Var(Xn,k) =

(k − 1)/n

((n− k − 1)/n)2
.

Consequently, for Tn,n the first time that all numbers are sampled,

ETn,n =
n∑

k=1

n

n− k − 1
=

n∑
k=1

n

k
≈ n log n, Var(Tn,n) =

n∑
k=1

(k − 1)/n

((n− k − 1)/n)2
≤

n∑
k=1

n2

k2
.

By taking bn = n log n, we have that

Tn,n −
∑n

k=1
n
k

n log n
→L2

0

and
Tn,n

n log n
→L2

1.

2. We can sometimes have an L2 law of large numbers for correlated random variables if the correlation
is sufficiently weak. Consider r balls to be placed at random into n urns. Thus each configuration has
probability n−r. Let Nn be the number of empty urns. Set the triangular array

Xn,k = IAn,k

where An,k is the event that the k-th of the n urns is empty. Then,

Nn =
n∑

k=1

Xn,k.

Note that
EXn,k = P (An,k) = (1− 1

n
)r.

Consider the case that both n and r tend to ∞ so that r/n → c. Then,

EXn,k → e−c.

For the variance Var(Nn) = EN2
n − (ENn)2 and

EN2
n = E

(
n∑

k=1

Xk,n

)2

=
n∑

j=1

n∑
k=1

P (An,j ∩An,k).
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The case j = k is computed above. For j 6= k,

P (An,j ∩An,k) =
(n− 2)r

nr
= (1− 2

n
)r → e−2c.

and Var(Nn)

= n(n−1)(1− 2
n

)r +n(1− 1
n

)r−n2(1− 1
n

)2r = n(n−1)((1− 2
n

)r−(1− 1
n

)2r)+n((1− 1
n

)r−(1− 1
n

)2r).

Take bn = n. Then Var(Nn)/n2 → 0 and

Nn

n
→L2

e−c

Theorem 5.10 (Weak law for triangular arrays). Assume that each row in the triangular array {Xn,k; 1 ≤
k ≤ kn} is a finite sequence of independent random variables. Choose an increasing unbounded sequence of
positive numbers bn. Suppose

1. limn→∞
∑kn

k=1 P{|Xn,k| > bn} = 0, and

2. limn→∞
1
b2n

∑kn

k=1 E[X2
n,k : {|Xn,k| ≤ bn}] = 0.

Let Sn = Xn,1 + · · ·+ Xn,kn be the row sum and set an =
∑kn

k=1 E[Xn,k : {|Xn,k| ≤ bn}]. Then

Sn − an

bn
→P 0.

Proof. Truncate Xn,k at bn by defining

Yn,k = Xn,kI{|Xn,k|≤bn}.

Let Tn be the row sum of the Yn,k and note that an = ETn. Consequently,

P{|Sn − an

bn
| > ε} ≤ P{Sn 6= Tn}+ P{|Tn − an

bn
| > ε}.

To estimate the first term,

P{Sn 6= Tn} ≤ P (
kn⋃

k=1

{Yn,k 6= Xn,k}) ≤
kn∑

k=1

P{|Xn,k| > bn}

and use hypothesis 1. For the second term, we have by Chebyshev’s inequality that

P{|Tn − an

bn
| > ε} ≤ 1

ε2
E

(
Tn − an

bn

)2

=
1

ε2b2
n

Var(Tn)

=
1

ε2b2
n

kn∑
k=1

Var(Yn,k) ≤ 1
ε2b2

n

kn∑
k=1

EY 2
n,k

and use hypothesis 2.
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The next theorem requires the following exercise.

Exercise 5.11. If a measurable function h : [0,∞) → R satisfies

lim
t→∞

h(t) = L, then lim
T→∞

1
T

∫ T

0

h(t) dt = L.

Theorem 5.12 (Weak law of large numbers). Let X1, X2, . . . be a sequence of independent random variable
having a common distribution. Assume that

lim
x→∞

xP{|X1| > x} = 0. (5.3)

Let Sn = X1 + · · ·+ Xn, µn = E[X1; {|X1| ≤ n}]. Then

Sn

n
− µn →P 0.

Proof. We shall use the previous theorem with Xn,k = Xk, kn = n, bn = n and an = nµn. To see that 1
holds, note that

n∑
k=1

P{|Xk,n| > n} = nP{|X1| > n}.

To check 2, write Yn,k = XkI{|Xk|≤n}. Then,

EY 2
n,1 =

∫ ∞

0

2yP{|Yn,1| > y} dy =
∫ n

0

2yP{|Yn,1| > y} dy ≤
∫ n

0

2yP{|X1| > y} dy.

By the hypothesis of the theorem and the exercise with L = 0,

lim
n→∞

1
n

EY 2
n,1 = 0.

Therefore,

lim
n→∞

1
n2

n∑
k=1

E[X2
n,k : {|Xn,k| ≤ n}] = lim

n→∞

n

n2
EY 2

n,1 = 0.

Corollary 5.13. Let X1, X2, . . . be a sequence of independent random variable having a common distribution
with finite mean µ. Then

1
n

n∑
k=1

Xk →P µ.

Proof.
xP{|X1| > x} ≤ E[|X1|; {|X1| > x}]. (5.4)

Now use the integrability of X1 to see that the limit is 0 as x →∞.
By the dominated convergence theorem

lim
n→∞

µn = lim
n→∞

E[X1; {|X1| ≤ n}] = EX1 = µ.
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Remark 5.14. Any random variable X satisfying (5.3) is said to belong to weak L1. The inequality in (5.4)
constitutes a proof that weak L1 contains L1.

Example 5.15 (Cauchy distribution). Let X be Cau(0, 1). Then

xP{|X| > x} = x
2
π

∫ ∞

x

1
1 + t2

dt = x(1− 2
π

tan−1 x).

which has limit 1 as x →∞ and the conditions for the weak law fail to hold. We shall see that the average
of Cau(0, 1) is Cau(0, 1).

Example 5.16 (The St. Petersburg paradox). Let X1, X2, . . . be independent payouts from the game “receive
2j if the first head is on the j-th toss.”

P{X1 = 2j} = 2−j , j ≥ 1.

Check that EX1 = ∞ and that
P{X1 ≥ 2m} = 2−m+1 = 22−m.

If we set kn = n, Xk,n = Xk and write bn = 2m(n), then, because the payouts have the same distribution, the
two criteria in the weak law become

1.
lim

n→∞
nP{X1 ≥ 2m(n)} = lim

n→∞
2n2−m(n).

2.

lim
n→∞

n

22m(n)
E[X2

1 ; {|X1| ≤ 2m(n)}] = lim
n→∞

n

22m(n)

m(n)∑
j=1

22jP{X1 = 2j}

= lim
n→∞

n

22m(n)
(2m(n)+1 − 2) ≤ lim

n→∞
2n2−m(n).

Thus, if the limit in 1 is zero, then so is the limit in 2 and the sequence m(n) must be o(log2 n).
Next, we compute

an = nE[X1; {|X1| ≤ 2m(n)}] = n

m(n)∑
j=1

22jP{X1 = 2j} = nm(n).

If m(n) →∞ as n →∞, the weak law gives us that

Sn − nm(n)
2m(n)

→P 0.

The best result occurs by taking m(n) → ∞ as slowly as possible so that 1 and 2 continue to hold. For
example, if we take m(n) to be the nearest integer to log2 n + log2 log2 n

Sn − n(log2 n + log2 log2 n)
n log2 n

→P 0 or
Sn

n log2 n
→P 1.

Thus, to be fair, the charge for playing n times is approximately log2 n per play.
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5.4 Strong Law of Large Numbers

Theorem 5.17 (Second Borel-Cantelli lemma). Assume that events {An;n ≥ 1} are independent and satisfy∑∞
n=1 P (An) = ∞, then

P{An i.o.} = 1.

Proof. Recall that for any x ∈ R, 1− x ≤ e−x. For any integers 0 < M < N ,

P (
N⋂

n=M

Ac
n) =

N∏
n=M

(1− P (An)) ≤
N∏

n=M

exp(−P (An)) = exp

(
−

N∑
n=M

P (An)

)
.

This has limit 0 as N →∞. Thus, for all M ,

P (
∞⋃

n=M

An) = 1.

Now use the definition of infinitely often and the continuity from of above of a probability to obtain the
theorem.

Taken together, the two Borel-Cantelli lemmas give us our first example of a zero-one law. For indepen-
dent events {An;n ≥ 1},

P{An i.o.} =
{

0 if
∑∞

n=1 P (An)< ∞,
1 if

∑∞
n=1 P (An)= ∞.

Exercise 5.18. 1. Let {Xn;n ≥ 1} be the outcome of independent coin tosses with probability of heads
p. Let {ε1, . . . , εk} be any sequence of heads and tails, and set

An = {Xn = ε1, . . . , Xn+k−1 = εk}.

Then, P{An i.o.} = 1.

2. Let {Xn;n ≥ 1} be the outcome of independent coin tosses with probability of heads pn. Then

(a) Xn →P 0 if and only if pn → 0, and

(b) Xn →a.s. 0 if and only if
∑∞

n=1 pn < ∞.

3. Let X1, X2, . . . be a sequence of independent identically distributed random variables. Then, they have
common finite mean if and only if P{Xn > n i.o.} = 0.

4. Let X1, X2, . . . be a sequence of independent identically distributed random variables. Find necessary
and sufficient conditions so that

(a) Xn/n →a.s. 0,

(b) (maxm≤n Xm)/n →a.s. 0,

(c) (maxm≤n Xm)/n →P 0,

(d) Xn/n →P 0,
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5. For the St. Petersburg’s paradox, show that

lim sup
n→∞

Xn

n log2 n
= ∞

almost surely and hence

lim sup
n→∞

Sn

n log2 n
= ∞

.

Theorem 5.19 (Strong Law of Lange Numbers). Let X1, X2, . . . be independent identically distributed
random variables and set Sn = X1 + · · ·+ Xn, then

lim
n→∞

1
n

Sn

exists almost surely if and only if E|X1| < ∞. In this case the limit is EX1 = µ with probability 1.

The following proof, due to Etemadi in 1981, will be accomplished in stages.

Lemma 5.20. Let Yk = XkI{|Xk|≤k} and Tn = Y1 + · · ·+ Yn, then it is sufficient to prove that

lim
n→∞

1
n

Tn = µ

Proof.

∞∑
k=1

P{Xk 6= Yk} =
∞∑

k=1

P{|Xk| ≥ k} =
∞∑

k=1

∫ k

k−1

P{|Xk| ≥ k} dx ≤
∫ ∞

0

P{|X1| > x} dx = E|X1| < ∞.

Thus, by the first Borel-Cantelli, P{Xk 6= Yk i.o.} = 0. Fix ω 6∈ {Xk 6= Yk i.o.} and choose N(ω) so that
Xk(ω) = Yk(ω) for all k ≥ N(ω). Then

lim
n→∞

1
n

(Sn(ω)− Tn(ω)) = lim
n→∞

1
n

(SN(ω)(ω)− TN(ω)(ω)) = 0.

Lemma 5.21.
∞∑

k=1

1
k2

Var(Yk) < ∞.

Proof. Set Aj,k = {j− 1 ≤ Xk < j} and note that P (Aj,k) = P (Aj,1). Then, noting that reversing the order
of summation holds if the summands are non-negative, we have that

∞∑
k=1

1
k2

Var(Yk) ≤
∞∑

k=1

1
k2

E[Y 2
k ] =

∞∑
k=1

1
k2

k∑
j=1

E[Y 2
k ;Aj,k]

≤
∞∑

k=1

1
k2

k∑
j=1

j2P (Aj,k) =
∞∑

j=1

∞∑
k=j

j2

k2
P (Aj,1)
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Note that for

j > 1,
∞∑

k=j

1
k2

≤
∫ ∞

j−1

1
x2

dx =
1

j − 1
≤ 2

j

j = 1,
∞∑

k=1

1
k2

= 1 +
∞∑

k=2

1
k2

≤ 2 =
2
j
.

Consequently,
∞∑

k=1

1
k2

Var(Yk) ≤
∞∑

j=1

j2 2
j
P (Aj,1) = 2

∞∑
j=1

jP (Aj,1) = 2EZ

where Z =
∑∞

j=1 jIAj,k
.

Because Z ≤ X1 + 1,
∞∑

k=1

1
k2

Var(Yk) ≤ 2E[X1 + 1] < ∞.

Theorem 5.22. The strong law holds for non-negative random variables.

Proof. Choose α > 1 and set βk = [αk]. Then

βk ≥
αk

2
,

1
β2

k

≤ 4
α2k

.

Thus, for all m ≥ 1,
∞∑

k=m

1
β2

k

≤ 4
∞∑

k=m

α−2k =
4α−2m

1− α−2
=

4
1− α−2

1
α2m

≤ A
1

β2
m

.

As shown above, we may prove the stong law for Tn. Let ε > 0, then by Chebyshev’s inequality,

∞∑
n=1

P{ 1
βn
|Tβn − ETβn | > ε} ≤

∞∑
n=1

1
(εβn)2

Var(Tn) ≤ 1
ε2

∞∑
n=1

1
β2

n

βn∑
k=1

Var(Yk)

by the independence of the Xn.
To interchange the order of summation, let

γk = j if and only if βj = k.

Then the double sum above is

1
ε2

∑
k∈im(β)

∞∑
n=γk

1
β2

n

Var(Yk) ≤ A

ε

∞∑
k=1

1
β2

γk

Var(Yk) =
A

ε

∞∑
k=1

1
k2

Var(Yk) < ∞.

By the first Borel-Cantelli lemma,

P{ 1
βn
|Tβn

− ETβn
| > ε i.o.} = 0.
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Consequently,

lim
n→∞

1
βn

(Tβn
− ETβn

) = 0 almost surely.

Now we have the convergence along any geometric subsequence because

EYk = E[Xk; {Xk < k}] = E[X1; {X1 < k}] → EX1 = µ

by the monotone convergence theorem. Thus,

1
βn

ETn =
1
βn

βn∑
k=1

EYk → µ. (5.5)

We need to fill the gaps between βn and βn+1, Use the fact that Yk ≥ 0 to conclude that Tn is monotone
increasing. So, for βn ≤ m ≤ βn+1,

1
βn+1

Tβn ≤
1
m

Tm ≤ 1
βn

Tβn+1 ,

βn

βn+1

1
βn

Tβn
≤ 1

m
Tm ≤ βn+1

βn

1
βn

Tβn+1 ,

and
lim inf
n→∞

βn

βn+1

1
βn

Tβn
≤ lim inf

m→∞

1
m

Tm ≤ lim sup
m→∞

1
m

Tm ≤ lim sup
n→∞

βn+1

βn

1
βn

Tβn+1 .

Thus, on the set in which (5.5) holds, we have, for each α > 1, that

µ

α
≤ lim inf

m→∞

1
m

Tm ≤ lim sup
m→∞

1
m

Tm ≤ αµ.

Now consider a decreasing sequence αk → 1, then

{ lim
m→∞

1
m

Tm = µ} =
∞⋂

k=1

{ µ

αk
≤ lim inf

m→∞

1
m

Tm ≤ lim sup
m→∞

1
m

Tm ≤ αkµ}.

Because this is a countable intersection of probability one events, it also has probability one.

Proof. (Strong Law of Large Numbers) For general random variables with finite absolute mean, write

Xn = X+
n −X−

n .

We have shown that each of the events

{ lim
n→∞

1
n

∞∑
n=1

X+
k = EX+

1 }, { lim
n→∞

1
n

∞∑
n=1

X−
k = EX−

1 }

has probability 1. Hence, so does their intersection which includes

{ lim
n→∞

1
n

∞∑
n=1

Xk = EX1}.
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For the converse, if limn→∞
1
nSn exists almost surely, then

1
n

Xn →a.s. 0 as n →∞.

Therefore P{|Xn| > n i.o.} = 0. Because these events are independent, we can use the second Borel-Cantelli
lemma in contraposition to conclude that

∞ >
∞∑

n=1

P{|Xn| > n} =
∞∑

n=1

P{|X1| > n} ≥ E|X1| − 1.

Thus, E|X1| < ∞.

Remark 5.23. Independent and identically distributed integrable random variables are easily seen to be
uniformly integrable. Thus, Sn/n is uniformly integrable. Because the limit exists almost surely, and because
Sn/n is uniformly integrable, the convergence must also be in L1.

5.5 Applications

Example 5.24 (Monte Carlo integration). Let X1, X2, . . . be independent random variables uniformally
distributed on the interval [0, 1]. Then

g(X)n =
1
n

n∑
i=1

g(Xi) →
∫ 1

0

g(x) dx = I(g)

with probability 1 as n →∞. The error in the estimate of the integral is supplied by the variance

Var(g(X)n) =
1
n

∫ 1

0

(g(x)− I(g))2 dx =
σ2

n
.

Example 5.25 (importance sampling). Importance sampling methods begin with the observation that we
could perform the Monte Carlo integration above beginning with Y1, Y2, . . . independent random variables
with common density fY with respect to Lebesgue measure on [0, 1]. Define the importance sampling weights

w(y) =
g(y)

fY (y)
.

Then

w(Y )n =
1
n

n∑
i=1

w(Yi) →
∫ 1

0

w(y)fY (y) dy =
∫ 1

0

g(y)
fY (y)

fY (y) dy = I(g).

This is an improvement if the variance in the estimator decreases, i.e.,∫ 1

0

(w(x)− I(g))2fY (y) dx = σ2
f << σ2.

The density fY is called the importance sampling function or the proposal density. For the case in which
g is a non-negative function, the optimal proposal distribution is a constant times g. Knowing this constant
is equivalent to solving the original numerical integration problem.
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Example 5.26 (Weierstrass approximation theorem). Let {Xn;n ≥ 1} be independent Ber(p) random
variables and left f : [0, 1] → R be continuous. The sum Sn = X1 + · · ·+ Xn is a Bin(n, p) random variable
and consequently

Ef

(
1
n

Sn

)
=

n∑
k=0

f

(
k

n

)
P{Sn = k} =

n∑
k=0

f

(
k

n

)(
n

k

)
pk(1− p)n−k.

This is known as the Bernstein polynomial of degree n.
By the strong law of large numbers Sn/n → p almost surely. Thus, by the bounded convergence theorem

f(p) = lim
n→∞

n∑
k=0

f

(
k

n

)(
n

k

)
pk(1− p)n−k.

To check that the convergence is uniform, let ε > 0. Because f is uniformly continuous, there exists δ > 0
so that |p− p̃| < δ implies |f(p)− f(p̃)| < ε/2. Therefore,∣∣∣∣Ef

(
1
n

Sn

)
− f(p)

∣∣∣∣ ≤ E

[∣∣∣∣f ( 1
n

Sn

)
− f(p)

∣∣∣∣ ;{∣∣∣∣ 1nSn − p

∣∣∣∣ < δ

}]
+E

[∣∣∣∣f ( 1
n

Sn

)
− f(p)

∣∣∣∣ ;{∣∣∣∣ 1nSn − p

∣∣∣∣ ≥ δ

}]
≤ ε

2
+ ||f ||∞P

{∣∣∣∣ 1nSn − p

∣∣∣∣ ≥ δ

}
.

By Chebyshev’s inequality, the second term in the previous line is bounded above by

||f ||∞
δ2n

Var(X1) =
||f ||∞
δ2n

p(1− p) ≤ ||f ||∞
4δ2n

<
ε

2

whenever n > ||f ||∞/(2δ2ε).

Exercise 5.27. Generalize and prove the Weierstrass approximation theorem for continuous f : [0, 1]d → R
for d > 1.

Example 5.28 (Shannon’s theorem). Let X1, X2, . . . be independent random vaariables taking values in a
finite alphabet S. Define p(x) = P{X1 = x}. For the observation X1(ω), X2(ω), . . ., the random variable

πn(ω) = p(X1(ω)) · · · p(Xn(ω))

give the probability of that observation. Then

log πn = log p(X1) + · · ·+ log p(Xn).

By the strong law of large numbers

lim
n→∞

− 1
n

πn = −
∑
x∈S

p(x) log p(x) almost surely

This sum, often denote H, is called the (Shannon) entropy of the source and

πn ≈ exp(−nH)

The strong law of large numbers stated in this context is called the asymptotic equipartition property.
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Exercise 5.29. Show that the Shannon entropy takes values between 0 and log n. Describe the cases that
gives these extreme values.

Definition 5.30. Let X1, X2, . . . be independent with common distribution F , then call

Fn(x) =
1
n

n∑
k=1

I(−∞,x](Xk)

the empirical distribution function. This is the fraction of the first n observations that fall below x.

Theorem 5.31 (Glivenko-Cantelli). The empirical distribution functions Fn for X1, X2, . . . be independent
and identically distributed random variables converge uniformly almost surely to the distribution function as
n →∞.

Proof. Let the Xn have common distribution function F . We must show that

P{ lim
n→∞

sup
x
|Fn(x)− F (x)| = 0} = 1.

Call Dn = supx |Fn(x) − F (x)|. By the right continuity of Fn and F , this supremum is achieved by
restricting the supremum to rational numbers. Thus, in particular, Dn is a random variable.

For fixed x, the strong law of large numbers states that

Fn(x) =
1
n

n∑
k=1

I(−∞,x](Xk) → E[I(−∞,x](X1)] = F (x)

on a set Rx having probability 1. Similarly,

Fn(x−) =
1
n

n∑
k=1

I(−∞,x)(Xk) → F (x−)

on a set Lx having probability 1. Define

H(t) = inf{x; t ≤ F (x)}

Check that
F (H(t)−) ≤ t ≤ F (H(t)).

Now, define the doubly indexed sequence xm,k = H(k/m). Hence,

F (xm,k−)− F (xm,k−1) ≤
1
m

, 1− F (xm,m) ≤ 1
m

.

Set
Dm,n = max{|Fn(xm,k)− F (xm,k)|, |Fn(xm,k−)− F (xm,k−)|; k = 1, . . . ,m}.

For x ∈ [xm,k−1, xm,k),

Fn(x) ≤ Fn(xm,k−) ≤ F (xm,k−) + Dm,n ≤ F (x) +
1
m

+ Dm,n
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and
Fn(x) ≥ Fn(xm,k−1) ≥ F (xm,k−1)−Dm,n ≥ F (x)− 1

m
−Dm,n

Use a similar argument for x < xm,1 and x > xm,m to see that

Dn ≤ Dm,n +
1
m

.

Define
Ω0 =

⋂
m,k≥1

(Lk/m ∩Rk/m).

Then, P (Ω0) = 1 and on this set
lim

n→∞
Dm,n = 0 for all m.

Consequently,
lim

n→∞
Dn = 0.

with probability 1.

5.6 Large Deviations

We have seen that the statistical average of independent and identically distributed random variables con-
verges almost surely to their common expected value. We now examine how unlikely this average is to be
away from the mean.

To motivate the theory of large deviations, let {Xk; k ≥ 1} be independent and identically distributed
random variables with moment generating function m. Choose x > µ. Then, by Chebyshev’s inequality, we
have for any θ > 0,

P{ 1
n

n∑
k=1

Xk > x} = P{exp θ(
1
n

n∑
k=1

Xk) > eθx} ≤
E[exp θ( 1

n

∑n
k=1 Xk)]

eθx
.

In addition,

E[exp θ(
1
n

n∑
k=1

Xk)] =
n∏

k=1

E[exp(
θ

n
Xk)] = m(

θ

n
)n.

Thus,
1
n

log P{ 1
n

n∑
k=1

Xk > x} ≤ − θ

n
x + λ(

θ

n
)

where λ is the logarithm of the moment generating function. Taking infimum over all choices of θ > 0 we
have

1
n

log P{ 1
n

n∑
k=1

Xk > x} ≤ −λ∗(x).

with
λ∗(x) = sup

θ>0
{θx− λ(θ)}.
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If λ∗(x) > 0, then

P{ 1
n

n∑
k=1

Xk > x} ≤ exp(−nλ∗(x)),

a geometric sequence tending to 0.

Definition 5.32. For an R-valued random variable X, define the logarithmic moment generating function

λ(θ) = log E[exp(θX)], θ ∈ R.

The Legendre-Fenchel transform of a function λ is

λ∗(x) = sup
θ∈R

{θx− λ(θ)}.

When λ is the log moment generating function, λ∗ is called the rate function.

Exercise 5.33. Find the Legendre-Fenchel transform of λ(θ) = θp/p, p > 1.

Call the domains Dλ = {θ : λ(θ) < ∞} and Dλ∗ = {θ : λ∗(θ) < ∞}.

Let’s now explore some properties of λ and λ∗.

1. λ and λ∗ are convex.

The convexity of λ follows from Hólder’s inequality. For α ∈ (0, 1),

λ(αθ1+(1−α)θ2) = log E[(eθ1X)α(eθ2X)(1−α)] ≤ log
(
E[eθ1X ]αE[eθ2X ](1−α)]

)
= αλ(θ1)+(1−α)λ(θ2).

The convexity of λ∗ follows from the definition. Again, for α ∈ (0, 1),

αλ∗(x1) + (1− α)λ∗(x2) = sup
θ∈R

{αθx1 − αλ(θ)}+ sup
θ∈R

{(1− α)θx2 − (1− α)λ(θ)}

≥ sup
θ∈R

{θ(αx1 + (1− α)x2)− λ(θ)} = λ∗(αx1 + (1− α)x2)

2. If µ ∈ R, then λ∗(x) take on the minimum value zero at x = µ.

λ(0) = log E[e0X ] = 0. Thus,
λ∗(x) ≥ 0x− λ(0x) = 0.

By Jensen’s inequality,
λ(θ) = log E[eθX ] ≥ E[log eθX ] = θµ

and thus
θµ− λ(θ) ≤ 0

for all θ. Consequently, λ(µ) = 0.
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3. If Dλ = {0}, then λ∗ is identically 0.

λ∗(θ) = λ(0) = 0.

4. λ∗ is lower semicontinuous.

Fix a sequence xn → x, then

lim inf
n→∞

λ∗(xn) ≥ lim inf
n→∞

(θxn − λ(θ)) = θx− λ(x).

Thus,
lim inf
n→∞

λ∗(xn) ≥ sup
θ∈R

{θx− λ(θ)} = λ∗(x).

5. If λ(θ) < ∞ for some θ > 0, then µ ∈ [−∞,∞) and for all x ≥ µ,

λ∗(x) = sup
θ≥0

{θx− λ(θ)}

is a non-decreasing function on (µ,∞).

For the positive value of θ guaranteed above,

θEX+ = E[θX; {X ≥ 0}] ≤ E[eθX ; {X ≥ 0}] ≤ m(θ) = exp λ(θ) < ∞.

and µ 6= ∞.

So, if µ = −∞, then λ(θ) = ∞ for θ < 0 thus we can reduce the infimum to the set {θ ≥ 0}. If µ ∈ R,
then for any θ < 0,

θx− λ(θ) ≤ θµ− λ(θ) ≤ λ∗(µ) = 0

and the supremum takes place on the set θ ≥ 0. The monotonicity of λ∗ on (µ,∞) follows from the
fact that θx− λ(θ) is non-decreasing as a function of x provided θ ≥ 0.

The corresponding statement holds if λ(θ) < ∞ for some θ < 0.

6. In all cases, infx∈R λ∗(x) = 0.

This property has been established if µ is finite or if Dλ = {0}. Now consider the case µ = −∞,
Dλ 6= {0}, noting that the case µ = ∞ can be handled similarly. Choose θ > 0 so that λ(θ) < ∞.
Then, by Chebyshev’s inequality,

log P{X > x} ≤ inf
θ≥0

log E[eθ(X−x)] = − sup
θ≥0

{θx− λ(θ)} = −λ∗(x).

Consequently,
lim

x→−∞
λ∗(x) ≤ lim

x→−∞
− log P{X > x} = 0.
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7. Exercise. λ is differentiable on the interior of Dλ with

λ′(θ) =
1

m(θ)
E[XeθX ].

In addition,
λ′(θ) = x̃ implies λ∗(x̃) = θx̃− λ(θ).

Exercise 5.34. Show that

1. If X is Pois(µ), λ∗(x) = µ− x + x log(x/µ), x > 0 and infinite if x ≤ 0.

2. If X is Ber(p), λ∗(x) = x log(x/p) + (1− x) log((1− x)/(1− p)) for x ∈ [0, 1] and infinite otherwise.

3. If X is Exp(β), λ∗(x) = βx− 1− log(βx) x > 0 and infinite if x ≤ 0.

4. If X is N(0, σ2), λ∗(x) = x2/2σ2

Theorem 5.35 (Cramér). Let {Xk; k ≥ 1} be independent and identically distributed random variables
with log moment generating function λ. Let λ∗ be the Legendre-Fenchel transform of λ and write I(A) =
infx∈A λ∗(x) and νn for the distribution of Sn/n, Sn = X1 + · · ·+ Xn, then

1. (upper bound) For any closed set F ⊂ R,

lim sup
n→∞

1
n

log νn(F ) ≤ −I(F ).

2. (lower bound) or any open set G ⊂ R,

lim inf
n→∞

1
n

log νn(G) ≥ −I(G).

Proof. (upper bound) Let F be a non-empty closed set. The theorem holds trivially if I(F ) = 0, so assume
that I(F ) > 0. Consequently, µ exists (possibly as an extended real number number). By Chebyshev’s
inequality, we have for every x and every θ > 0,

νn[x,∞) = P{ 1
n

Sn − x ≥ 0} ≤ E[exp(nθ(Sn/n− x))] = e−nθx
n∏

k=1

E[eθXk ] = exp(−n(θx− λ(θ))).

Therefore, if µ < ∞,
νn[x,∞) ≤ exp−nλ∗(x) for all x > µ.

Similarly, if µ > −∞,
νn(−∞, x] ≤ exp−nλ∗(x) for all x < µ.

Case I. µ finite.

λ∗(µ) = 0 and because I(F ) > 0, µ ∈ F c. Let (x−, x+) be the largest open interval in F c that contains
x. Because F 6= ∅, at least one of the endpoints is finite.

x− finite implies x− ∈ F and consequently λ∗(x−) ≥ I(F ).
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x+ finite implies x+ ∈ F and consequently λ∗(x+) ≥ I(F ).

Note that F ⊂ (∞, x−] ∩ [x+,∞) we have by the inequality above that

νn(F ) ≤ νn(∞, x−] + νn[x+,∞) ≤ exp−nλ∗(x−) + exp−nλ∗(x+) ≤ 2 exp−nI(F ).

Case II. µ is infinite.

We consider the case µ = −∞. The case µ = ∞ is handled analogously. We have previously shown that
limx→−∞ λ∗(x) = 0. Thus, I(F ) > 0 implies that x+, the infimum of the set F is finite. F is closed, so
x+ ∈ F and λ∗(x+) ≥ I(F ). In addition, F ⊂ [x+,∞) and so

νn(F ) ≤ νn[x+,∞) ≤ exp−nλ∗(x) ≤ exp−nI(F ).

(lower bound) Claim. For every δ > 0,

lim inf
n→∞

1
n

log νn(−δ, δ) ≥ inf
θ∈R

λ(θ) = −λ∗(0).

Case I. The support of X1 is compact and both P{X1 > 0} > 0 and P{X1 < 0} > 0.

The first assumption guarantees that Dλ = R. The second assures that λ(θ) → ∞ as |θ| → ∞. This
guarantees a unique finite global minimum

λ(η) = inf
θ∈R

λ(θ) and λ′(η) = 0.

Define a new measure ν̃ with density

dν̃

dν1
= exp(ηx− λ(η)).

Note that
ν̃(R) =

∫
R

dν̃

dν1
ν1(dx) = exp(−λ(η))

∫
R

eηx ν1(dx) = 1

and ν̃ is a probability.

Let {X̃k; k ≥ 1} be random variables with distribution ν̃ and let ν̃n denote the distribution of (X̃1 + · · ·+
X̃n)/n. Note that

EX̃1 = exp(−λ(η))
∫

R
xeηx ν1(dx) = λ′(η) = 0.

By the law of large numbers, we have, for any δ̃ > 0,

lim
n→∞

ν̃n(−δ̃, δ̃) = 1.

Let’s compare this to

νn(−δ̃, δ̃) =
∫

I{|
Pn

k=1 xk|<nδ̃} ν(dx1) · · · ν(dxn)

≥ exp(−nδ̃|η|)
∫

I{|
Pn

k=1 xk|<nδ̃} exp(η
n∑

k=1

xk) ν(dx1) · · · ν(dxn)

= exp(−nδ̃|η|) exp(nλ(η))ν̃n(−δ̃, δ̃).
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Therefore, for every 0 < δ̃ < δ,

lim inf
n→∞

1
n

log νn(−δ, δ) ≥ lim inf
n→∞

1
n

log νn(−δ̃, δ̃) ≥ λ(η)− δ̃|η|

and the claim follows for case I.

Case II. ν does not necessarily have compact support.

Choose M sufficiently large so that both

P{0 < X1 ≤ M} > 0 and P{0 > X1 ≥ −M} > 0.

Let ν̃M (A) = P{X1 ∈ A||X1| ≤ M} and

ν̃M
n (A) = P{(X1 + · · ·+ Xn)/n ∈ A||Xk| ≤ M ; k = 1, . . . , n}.

Then,

νn(−δ, δ) = P{−δ < (X1 + · · ·+ Xn)/n < δ||Xk| ≤ M ; k = 1, . . . , n}P{|Xk| ≤ M ; k = 1, . . . , n}
= ν̃M

n (−δ, δ)ν[−M,M ])n.

Now apply case I to ν̃M . The log moment generating function for ν̃M is

λM (θ) = log
∫ M

−M

eθx ν(dx)− log ν[−M,M ] = λ̃M (θ)− log ν[−M,M ].

Consequently,

lim inf
n→∞

1
n

νn(−δ, δ) ≥ log ν[−M,M ] + lim inf
n→∞

1
n

ν̃M
n (−δ, δ) ≥ inf

θ∈R
λ̃M (θ).

Set
IM = − inf

θ∈R
λ̃M (θ).

Because M 7→ λ̃M (θ) is nondecreasing, so is −IM and

Ĩ = lim
M→∞

IM

exists and is finite. Moreover,

lim inf
n→∞

1
n

νn(−δ, δ) ≥ −Ĩ .

Because −IM ≤ λ̃M (0) ≤ λ(0) = 0 for all M , −Ĩ ≤ 0. Therefore, the level sets

λ̃−1
M (−∞, Ĩ] = {θ; λ̃M (θ) ≤ Ĩ}

are nonempty, closed, and bounded (hence compact) and nested. Thus, by the finite intersection property,
their intersection is non-empty. So, choose θ0 in the intersection. By the monotone convergence theorem,

λ(θ0) = lim
M→∞

λ̃M (θ0) ≤ −Ĩ

and the claim holds.
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Case III. ν(−∞, 0) = 0 or ν(0,∞) = 0,

In this situation, λ is monotone and infθ∈R λ(θ) = log ν{0}. The claim follows from obvserving that

νn(−δ, δ) ≥ νn{0} = ν{0}n.

Now consider the transformation X̃k = Xk − x0, then its log moment generating function is

λ̃(θ) = log E[eθ(X1−x0)] = λ(θ)− θx0.

Its Legendre transform

λ̃∗(x) = sup
θ∈R

{θx− λ̃(θ)} = sup
θ∈R

{θ(x + x0)− λ(θ)} = λ∗(x + x0).

Thus, by the claim, we have for every x0 and every δ > 0

lim inf
n→∞

1
n

log νn(x0 − δ, x0 + δ) ≥ −λ∗(x0).

Finally, for any open set G and any x0 ∈ G, we can choose δ > 0 so that (x0 − δ, x0 + δ) ⊂ G.

lim inf
n→∞

1
n

νn(G) ≥ lim inf
n→∞

1
n

log νn(x0 − δ, x0 + δ) ≥ −λ∗(x0)

and the lower bound follows.

Remark 5.36. Note that the proof provides that

µn(F ) ≤ 2 exp(−nI(F )).

Example 5.37. For {Xk;x ≥ 1} independent Exp(β) random variables, we have for x > 1/β,

P{ 1
n

(X1 + · · ·+ Xn) > x} ≤ e−(βx−1)

(
1

βx

)n

,

and for x < 1/β,

P{ 1
n

(X1 + · · ·+ Xn) < x} ≤ e−(βx−1)

(
1

βx

)n

.
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6 Convergence of Probability Measures

In ths section, (S, d) is a separable metric space, Cb(S) is space of bounded continuous functions on S. If S
is complete, then Cb(S) is a Banach space under the supremum norm ||f || = supx∈S |f(x)|. In addition, let
P(S) denote the collection of probability measures on S.

6.1 Prohorov Metric

Definition 6.1. For µ, ν ∈ P(S), define the Prohorov metric

ρ(ν, µ) = inf{ε > 0;µ(F ) ≤ ν(F ε) + ε for all closed sets F}.

where
F ε = {x ∈ S; inf

x̃∈F
d(x, x̃) < ε}.

the ε neighborhood of F . Note that this set is open.

We next show that ρ deserves the name metric.

Lemma 6.2. Let µ, ν ∈ P(S) and ε, η > 0. If

µ(F ) ≤ ν(F ε) + η.

for all closed sets F , then
ν(F ) ≤ µ(F ε) + η.

for all closed sets F ,

Proof. Given a closed set F̃ , then F = S\F̃ ε is closed and F̃ ⊂ S\F ε. Consequently,

µ(F̃ ε) = 1− µ(F ) ≥ 1− ν(F ε)− η ≥ ν(F̃ )− η.

Exercise 6.3. For any set A, limε→0 Aε = Ā.

Proposition 6.4. The Prohorov metric is a metric.

Proof. 1. (identity) If ρ(µ, ν) = 0, then µ(F ) = ν(F ) for all closed F and hence for all sets in B(S).

2. (symmetry) This follows from the lemma above.

3. (triangle inequality) Let κ, µ, ν ∈ P(S) with

ρ(κ, µ) > ε1, ρ(µ, ν) > ε2.

Then, for any closed set

κ(F ) ≤ µ(F ε1) + ε1 ≤ µ(F ε1) + ε1 ≤ ν(F ε1
ε2) + ε1 + ε2 ≤ ν(F ε1+ε2) + ε1 + ε2.

So,
ρ(κ, ν) ≤ ε1 + ε2
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Exercise 6.5. Let S = R, by considering the closed sets (−∞, x] and the Prohorov metric, we obtain the
Lévy metric for distribution function on R. For two distributions F and G, define

ρL(F,G) = inf{ε > 0;G(x− ε)− ε ≤ F (x) ≤ G(x + ε) + ε}.

1. Verify that ρL is a metric.

2. Show that the sequence of distribution Fn converges to F in the Lévy metric if and only if

lim
n→∞

Fn(x) = F (x)

for all x which are continuity points of F

Exercise 6.6. If {xk; k ≥ 1} is a dense subset of (S, d), then

{
∑
k∈A

αkδxk
;A is finite, αk ∈ Q+,

∑
k∈A

αk = 1}.

is a dense subset of (P(S), ρ). This, if (S, d) is separable, so is (P(S), ρ)

With some extra work, we can show that if (S, d) is complete, then so is (P(S), ρ).

6.2 Weak Convergence

Recall the definition:

Definition 6.7. A sequence {νn;n ≥ 1} ⊂ P(S) is said to converge weakly to ν ∈ P(S) (νn ⇒ ν) if

lim
n→∞

∫
S

f(x) νn(dx) =
∫

S

f(x) ν(dx) for all f ∈ Cb(S).

A sequence {Xn;n ≥ 1} of S-valued random variables is said to converge in distribution to X if

lim
n→∞

E[f(Xn)] = E[f(X)] for all f ∈ Cb(S).

Thus, Xn converges in distribution to X if and only if the distribution of Xn converges weakly to the
distribution of X.

Exercise 6.8. Let S = [0, 1]and define νn{x} = 1/n, x = k/n, k = 0, . . . , n− 1. Thus, νn ⇒ ν, the uniform
distribution on [0, 1]. Note that νn(Q ∩ [0, 1]) = 1 but ν(Q ∩ [0, 1]) = 0

Definition 6.9. Recall that the boundary of a set A ⊂ S is given by ∂A = Ā∩Ac. A is called a ν-continuity
set if ν ∈ P(S), A ∈ B(S), and

ν(∂A) = 0,

Theorem 6.10 (portmanteau). Let (S, d) be separable and let {νk; k ≥ 1} ∪ ν ⊂ P(S). Then the following
are equivalent.

1. limk→∞ ρ(νk, ν) = 0.
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2. νk ⇒ ν as k →∞.

3. limk→∞
∫

S
h(x) νk(dx) =

∫
S

h(x) ν(dx) for all uniformly continuous h ∈ Cb(S).

4. lim supk→∞ νk(F ) ≤ ν(F ) for all closed sets F ⊂ S.

5. lim infk→∞ νk(G) ≥ ν(G) for all open sets G ⊂ S.

6. limk→∞ νk(A) = ν(A) for all ν-continuity sets A ⊂ S.

Proof. (1 → 2) Let εk = ρ(νk, ν) + 1/k and choose a nonnegative h ∈ Cb(S). Then for every k,∫
h dνk =

∫ ||h||

0

νk{h ≥ t} dt ≤
∫ ||h||

0

ν{h ≥ t}εk dt + εk||h||

Noting that {h ≥ t} is a closed set.

lim sup
k→∞

∫
h dνk ≤ lim

k→∞

∫ ||h||

0

ν{h ≥ t}εk dt =
∫ ||h||

0

ν{h ≥ t} dt =
∫

h dν.

Apply this inequality to ||h||+ h and ||h|| − h to obtain

lim sup
k→∞

∫
(||h||+ h) dνk ≤

∫
(||h||+ h) dν, lim sup

k→∞

∫
(||h|| − h) dνk ≤

∫
(||h|| − h) dν.

Now, combine these two inequalities to obtain 2.

(2 → 3) is immediate.

(3 → 4) For F closed, define d(x, F ) = inf x̃∈F d(x̃, x) and

hε(x) = max{
(

1− d(x, F )
ε

)
, 0}.

Then hε is uniformly continuous, hε ≥ IF , and because F is closed,

lim
ε→0

hε(x) = IF (x).

Thus, for each ε > 0,

lim sup
k→∞

νk(F ) ≤ lim
k→∞

∫
hε dνk =

∫
hε dν

and, therefore,

lim sup
k→∞

νk(F ) ≤ lim
ε→0

∫
hε dν = ν(F ).

(4 → 5) For every open set G ⊂ S,

lim inf
k→∞

νk(G) = 1− lim sup
k→∞

νk(Gc) ≥ 1− ν(Gc) = ν(G).
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(5 → 6) Note that intA = A\∂A and Ā = A ∪ ∂A . Then

lim sup
k→∞

νk(A) ≤ lim sup
k→∞

νk(Ā) = 1− lim inf
k→∞

νk((Ā)c) ≤ 1− ν((Ā)c) = ν(Ā) = ν(A)

and
lim inf
k→∞

νk(A) ≥ lim inf
k→∞

νk(int(A)) ≥ ν(int(A)) = ν(A).

(6 → 2) Choose a non-negative function h ∈ Cb(S). Then ∂{h ≥ t} ⊂ {h = t}. So {h ≥ t} is a
ν-continuity set for all but at most countably many t ≥ 0. Therefore, νk{h ≥ t} → ν{h ≥ t} as t → ∞ for
(Lebesgue) almost all t.

lim
k→∞

∫
h dνk = lim

k→∞

∫ ||h||

0

νk{h ≥ t} dt =
∫ ||h||

0

ν{h ≥ t}dt =
∫

h dν.

Now consider the positive and negative parts of an arbitrary function in Cb(S).

(5 → 1) Let ε > 0 and choose a countable partition {Aj ; j ≥ 1} of Borel sets whose diameter is at most
ε/2. Let J be the least integer satisfying

ν(
J⋃

j=1

Aj) > 1− ε

2

and let
Gε = {(

⋃
j∈C

Aj)ε/2;C ⊂ {1, · · · , J}}.

Note that Gε is a finite collection of open sets, Whenever 5 holds, there exists an integer K so that

ν(G) ≤ νk(G) +
ε

2
, for all k ≥ K and for all G ∈ Gε.

Now choose a closed set F and define

F0 =
⋃
{Aj ; 1 ≤ j ≤ J,Aj ∩ F 6= ∅}.

Then F
ε/2
0 ∈ Gε, F ⊂ F

ε/2
0 ∪

(
S\(
⋃J

j=1 Aj)
)
, and

ν(F ) ≤ ν(F ε/2
0 ) +

ε

2
≤ νk(F ε/2

0 ) + ε ≤ νk(F ε) + ε

for all k ≥ K. Hence ρ(νk, ν) ≤ ε for all k ≥ K.

Exercise 6.11. 1. (continuous mapping theorem) Let h be a measurable function and let Dh be the dis-
continuity set of h. If Xn →D X and if P{X ∈ Dh} = 0, then h(Xn) →D h(X).

2. If the distribution functions Fn on R converge to F for all continuity points of F , and h ∈ Cb(R) then

lim
n→∞

∫
h(x) dFn(x) =

∫
h(x) dF (x).
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3. If Fn, n ≥ 1 and F are distribution functions and Fn(x) → F (x) for all x. Then F continuous implies

lim
n→∞

sup
x
|Fn(x)− F (x)| = 0.

4. If {Xn;n ≥ 1} take values on a discrete set D, then Xn →D X if and only if

lim
n→∞

P{Xn = x} = P{X = x} for all x ∈ D.

5. If Xn →D c for some constant c, then Xn →P c

6. Assume that νn ⇒ ν and let h, g : S → R be continuous functions satisfying

lim
x→±∞

|g(x)| = ∞, lim
x→±∞

∣∣∣∣h(x)
g(x)

∣∣∣∣ = 0.

Show that

lim sup
n→∞

∫
|g(x)| νn(dx) < ∞ implies lim

n→∞

∫
h(x) νn(dx) =

∫
h(x) ν(dx).

Consider of the families of discrete random variables and let {νθn ;n ≥ 1} be a collection of distributions
from that family. Then νθn ⇒ νθ if and only if θn → θ. For the families of continuous random variables, we
have the following.

Theorem 6.12. Assume that the probability measures {νn;n ≥ 1} are mutually absolutely continuous with
respect to a σ-finite measure µ with respective densities {fn;n ≥ 1}. If fn → f , µ-almost everywhere, then
νn ⇒ ν.

Proof. Let G be open, then by Fatou’s lemma,

lim inf
k→∞

νk(G) = lim inf
k→∞

∫
G

fk dµk ≥
∫

G

f dµ = ν(G)

Exercise 6.13. Assume that ck → 0 and ak →∞ and that akck → λ, then (1 + ck)ak → expλ

Example 6.14. 1. Let Tn have a t(0, 1)-distribution with n degrees of freedom. Then the densities of
Tn converge to the density of a standard normal random variable. Consequently, the Tn converge in
distribution to a standard normal.

2. (waiting for rare events) Let Xp be Geo(p). Then P{X > n} = (1− p)n Then

P{pXp > x} = (1− p)[x/p].

Therefore pXp converges in distribution to an Exp(1) random variable.

Exercise 6.15. 1. Let Xn be Bio(n, p) with np = λ. Then Xn converges in distribution to a Pois(λ)
random variable.

79



2. If Xn →D X and Yn →D c where c is a constant, then Xn + Yn →D X + c. A corollary is that if
Xn →D X and Zn −Xn →D 0, then Zn →D X.

3. If Xn →D X and Yn →D c where c is a constant, then XnYn →D cX.

Example 6.16. 1. (birthday problem) Let X1, X2, . . . be independent and uniform on {1, . . . , N}. Let
TN = min{n : Xn = Xm for some m < n}. Then

P{TN > n} =
n∏

m=2

(
1− m− 1

N

)
.

By the exercise above,

lim
N→∞

P{ TN√
N

> x} = exp
(
−x2

2

)
.

For the case N = 365,

P{TN > n} ≈ exp
(
− n2

730

)
.

The choice n = 22 gives probability 0.515. An exact computation gives 0.524.

2. (central order statistics) For 2n + 1 observations of independent U(0, 1) random variables, X(n+1) the
one in the middle is Beta(n, n) and thus has density

(2n + 1)
(

2n

n

)
xn(1− x)n

with respect to Lebesgue measure on (0, 1). This density is concentrating around 1/2 with variance

n2

(2n)2(2n + 1)
≈ 1

8n

Thus we look at
Zn = (X(n+1) −

1
2
)
√

8n

which have mean 0 and variance near to one. Then Zn has density

(2n + 1)
(

2n

n

)(
1
2

+
z√
8n

)n(1
2
− z√

8n

)n 1√
8n

=
(

2n

n

)
2−2n

(
1− z2

2n

)n 2n + 1
2n

√
n

2
.

Now use Sterling’s formula to see that this converges to

1√
2π

exp
(
−z2

2

)
.
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6.3 Prohorov’s Theorem

If (S, d) is a complete and separable metric space, then P(S) is a complete and separable metric space under
the Prohorov metric ρ. One common approach to proving the metric convergence νn ⇒ ν is first to verify
that {νk; k ≥ 1} is a relatively compact set, i.e., a set whose closure is compact, then this sequence has limit
points. Thus, we can obtain convergence by showing that this set has at most one limit point.

In the case of complete and separable metric spaces, we will use that at set C is compact if and only it is
closed and totally bounded, i.e., for every ε > 0 there exists a finite number of points ν1, . . . , νn ∈ C so that

C ⊂
n⋃

k=1

Bρ(νk, ε).

Definition 6.17. A collection A of probabilities on a topological space S is tight if for each ε > 0, then
exists a compact set K ⊂ S

ν(K) ≥ 1− ε, for all ν ∈ A.

Lemma 6.18. If (S, d) is complete and separable then any one point set {ν} ⊂ P(S) is tight.

Proof. Choose {xk; k ≥ 1} dense in S. Given ε > 0, choose integers N1, N2, . . . so that for all n,

ν(
Nn⋃
k=1

Bd(xk,
1
n

)) ≥ 1− ε

2k
.

Define K to be the closure of
∞⋂

n=1

Nn⋃
k=1

Bd(xk,
1
n

).

Then K is totally bounded and hence compact. In addition,

ν(K) ≥ 1−
∞∑

n=1

ε

2n
= 1− ε.

Exercise 6.19. A sequence {νm;n ≥ 1} ⊂ P(S) is tight if and only if for every ε > 0, there exists a compact
set K so that

lim inf
n→∞

νn(K) > 1− ε.

Exercise 6.20. Assume that h : R+ → R satisfies

lim
s→∞

h(s) = ∞.

Let {νλ;λ ∈ Λ} be a collection probabilities on Rd satisfying

sup{
∫

h(|x|) νλ(dx);λ ∈ Λ} < ∞.

Then, {νλ;λ ∈ Λ} is tight.
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Theorem 6.21 (Prohorov). Let (S, d) be complete and separable and let A ⊂ P(S). Then the following are
equivalent:

1. A is tight.

2. For each ε > 0, then exists a compact set K ⊂ S

ν(Kε) ≥ 1− ε, for all ν ∈ A.

3. A is relatively compact.

Proof. (1 → 2) is immediate.

(2 → 3) We show that A is totally bounded. So, given η > 0, we must find a finite set N ⊂ P(S) so that

A ⊂ {µ : ρ(ν, µ) < η for some ν ∈ N} =
⋃

ν∈N
Bρ(µ, η).

Fix ε ∈ (0, η/2) and choose a compact set K satisfying 2. Then choose {x1, . . . , xn} ⊂ K such that

Kε ⊂
n⋃

k=1

Bd(xk, 2ε).

Fix x0 ∈ S and M ≥ n/ε and let

N = {ν =
n∑

j=0

mi

M
δxj

; 0 ≤ mj ,
n∑

j=0

mj = M}.

To show that every µ ∈ A is close to some probability in N , Define,

Aj = Bd(xj , 2ε)\
j−1⋂
k=1

Bd(xk, 2ε), kj = [Mµ(Aj)], k0 = M −
n∑

j=1

mj

and use this to choose ν ∈ N . Then, for any closed set F ,

µ(F ) ≤ µ
(⋃

{Aj : F ∩Aj 6= ∅}
)

+ ε ≤
∑

{j:F∩Aj 6=∅}

[Mµ(Aj)] + 1
M

+ ε ≤ ν(F 2ε) + 2ε.

Thus ρ(ν, µ) < 2ε < η.

(3 → 1) Because A is totally bounded, there exists, for each n ∈ N, a finite set Nn such that

A ⊂ {µ : ρ(ν, µ) <
ε

2n+1
for some ν ∈ Nn}.

By the lemma, choose a compact set Kn so that

ν(Kn) ≥ 1− ε

2n
for all ν ∈ A.
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Given µ ∈ A, there exists νn ∈ Nn so that

µ(Kε/2n+1

n ) ≥ νn(Kn)− ε

2n+1
≥ 1− ε

2n
.

Now, note that K, the closure of
∞⋂

n=1

Kε/2n+1

n

is compact and that

µ(K) ≥ 1−
∞∑

n=1

ε

2n
= 1− ε.

Of course, it is the case 1 → 3 that will attract the most attention.

6.4 Separating and Convergence Determining Sets

We now use the tightness criterion based on the Prohorov metric to give us assistance in determining weak
limits. The goal in this section is to reduce the number of test functions needed for convergence. We begin
with two definitions.

Definition 6.22. 1. A set H ⊂ Cb(S) is called separating if for any µ, ν ∈ P(S),∫
h dµ =

∫
h dν for all h ∈ H

implies µ = ν.

2. A set H ⊂ Cb(S) is called convergence determining if for any sequence {νn;n ≥ 1} ⊂ P(S) and
ν ∈ P(S),

lim
n→∞

∫
h dνn =

∫
h dν for all h ∈ H

implies νn ⇒ ν.

Example 6.23. If S = N, then by the uniqueness of power series, the collection {zx; , 0 ≤ z ≤ 1} is
separating. Take νk = δk to see that it is not convergence determining.

Exercise 6.24. 1. Cb(S) is convergence detemining.

2. Convergence determining sets are separating.

For a converse in the case of tightness, we have:

Proposition 6.25. Let {νn;n ≥ 1} ⊂ P(S) be relatively compact and let H ⊂ Cb(S) be separating. Then
ν ⇒ ν if and only if

lim
n→∞

∫
h dνn

exists for all h ∈ H. In this case, the limit is
∫

h dν.
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Proof. Let ν̃ and µ̃ be a weak limits of {νn;n ≥ 1}, then for some subsequences {nk; k ≥ 1}, and {mk; k ≥ 1},

lim
k→∞

∫
h dνnk

=
∫

h dν̃ and lim
k→∞

∫
h dνmk

=
∫

h dµ̃ for all h ∈ H

Thus, ∫
h dν̃ =

∫
h dµ̃ for all h ∈ H

and because H is separating ν̃ = µ̃, and νn ⇒ ν̃.

Exercise 6.26. Let K be a compact metric space set fn : K → R be continuous. If, for all z ∈ K,

lim
n→∞

fn(z) = f(z),

a continuous function, then the convergence is uniform.

Theorem 6.27. Let {Xn;n ≥ 1} be N-valued random variables having respective generating function gn(z) =
EzXn . If

lim
n→∞

gn(z) = g(z),

and g is continuous at 1, then Xn converges in distribution to a random variable X with generating function
g.

Proof. Let z ∈ [0, 1) and choose z̃ ∈ (z, 1). Then for each n and k

P{Xn = k}zk < z̃k.

Thus, by the Weierstrass M -test, gn converges uniformly to g on [0, z̃] and thus g is continuous at z. Thus,
by hypothesis, g is an analytic function on [0, 1].

lim
n→∞

P{Xn > x} = lim
n→∞

lim
z→1

(
gn(z)−

x∑
k=1

P{Xn = k}zk

)

= lim
z→1

lim
n→∞

(
gn(z)−

x∑
k=1

P{Xn = k}zk

)
= lim

z→1

(
g(z)−

x∑
k=1

g(k)(0)zk

)

= g(1)−
x∑

k=1

g(k)(0) < ε

by choosing x sufficiently large. Thus, we have that {Xn;n ≥ 1} is tight and hence relatively compact.
Because {zx; , 0 ≤ z ≤ 1} is separating, we have the theorem.

Example 6.28. Let Xn be a Bin(n, p) random variable. Then

EzXn = ((1− p) + pz)n

Set λ = np, then

lim
n→∞

EzXn = lim
n→∞

(1 +
λ

n
(z − 1))n = expλ(z − 1),

the generating function of a Poisson random variable. The convergence of the distributions of {Xn;n ≥ 1}
follows from the fact that the limiting function is continuous at z = 1.
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We will now go on to show that if H separates points then it is separating. We recall a definition,

Definition 6.29. A collection of functions H ⊂ Cb(S) is said to separate points if for every distinct pair
of points x1, x2 ∈ S, there exists h ∈ H such that h(x1) 6= h(x2).

. . . and a generalization of the Weierstrass approximation theorem.

Theorem 6.30 (Stone-Weierstrass). Assume that S is compact. Then C(S) is an algebra of functions under
pointwise addition and multiplication. Let A be a sub-algebra of C(S) that contains the constant functions
and separates points then A is dense in C(S) under the topology of uniform convergence.

Theorem 6.31. Let (S, d) be complete and separable and let H ⊂ Cb(S) be an algebra. If H separates
points, the H is separating.

Proof. Let µ, ν ∈ P(S) and define

M = {h ∈ Cb(S);
∫

h dµ =
∫

h dν}.

If H ⊂ M , then the closure of the algebra H̃ = {a + h;h ∈ H, a ∈ R} is contained in M .
Let h ∈ Cb(S) and let ε > 0. By a previous lemma, the set {µ, ν} is tight. Choose K compact so that

µ(K) ≥ 1− ε, ν(K) ≥ 1− ε.

By the Stone-Weierstrass theorem, there exists a sequence {hn;n ≥ 1} ⊂ H̃ such that

lim
n→∞

sup
x∈K

|hn(x)− h(x)| = 0.

Because hn may not be bounded on Kc we replace it with hn,ε(x) = hn(x) exp(−εhn(x)2). Note that
hn,ε is in the closure of H̃ Define hε similarly.

Now observe that for each n∣∣∣ ∫
S

hn dµ−
∫

S

hn dν
∣∣∣ ≤

∣∣∣ ∫
S

hn dµ−
∫

K

hndµ
∣∣∣+ ∣∣∣ ∫

K

hn dµ−
∫

K

hn,ε dµ
∣∣∣+ ∣∣∣ ∫

K

hn,ε dµ−
∫

S

hn,ε dµ
∣∣∣

+
∣∣∣ ∫

S

hn,ε dµ−
∫

S

hn,ε dν
∣∣∣

+
∣∣∣ ∫

S

hn,ε dν −
∫

K

hn,ε dν
∣∣∣+ ∣∣∣ ∫

K

hn,ε dν −
∫

K

hn dν
∣∣∣+ ∣∣∣ ∫

K

hn dν −
∫

S

hn dν
∣∣∣

For the seven terms, note that:

• The fourth term is zero because hε,n is in the closure of H̃.

• The second and sixth terms tend to zero as n →∞ by the uniform convergence of hnε to hε.

• The remaining terms are integrals over S\K, a set that has both ν and µ measure at most ε. The
integrands are bounded by 1/

√
2eε.

Thus, letting ε → 0 we obtain that M = Cb(S).

This creates for us an easy method of generating separating classes. So, for example, polynomials (for
compact spaces), trigonometric polynomials, n-times continuously differentiable and bounded functions are
separating classes.
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6.5 Characteristic Functions

Recall that the characteristic function for a probability measure on Rd is

φ(θ) =
∫

ei〈θ,x〉 ν(dx) = Eei〈θ,X〉

if X is a random variable with distribution ν. Sometimes we shall write φν of φX if more than one charac-
teristics function is under discussion.

Because the functions {ei〈θ,x〉; θ ∈ Rd} for an algebra that separates points, this set is separating. This
is just another way to say that the Fourier transform is one-to-one.

Some additional properties of the characteristic function are:

1. For all θ ∈ Rd,
|φ(θ)| ≤ 1 = φ(0).

2. For all θ ∈ Rd,
φ(−θ) = φ(θ).

3. The characteristic function φ is uniformly continuous in Rd.

For all θ, h ∈ Rd,

φ(θ + h)− φ(θ) =
∫

(ei〈θ+h,x〉 − ei〈θ,x〉) ν(dx) =
∫

ei〈θ,x〉(ei〈h,x〉 − 1) ν(dx).

Therefore,

|φ(θ + h)− φ(θ)| ≤
∫
|ei〈h,x〉 − 1| ν(dx).

This last integrand is bounded by 2 and has limit 0 as h → 0 for each x ∈ Rd. Thus, by the bounded
convergence theorem, the integral has limit 0 as h → 0. Because the limit does not involve θ, it is
uniform.

4. Let a ∈ R and b ∈ Rd, then
φaX+b(θ) = φ(aθ)ei〈θ,b〉.

Note that
Eei〈θ,aX+b〉 = ei〈θ,b〉Eei〈aθ,X〉.

5. φ−X(θ) = φX(θ). Consequently, X has a symmetric distribution if and only if its characteristic function
is real.

6. If {φj ; j ≥ 1} are characteristic functions and λj ≥ 0,
∑∞

j=1 λj = 1, then the mixture

∞∑
j=1

λjφj

is a characteristic function.

If νj has characteristic function φj , then
∑∞

j=1 λjνj is a probability measure with characteristic function∑∞
j=1 λjφj .
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7. If {φj ;n ≥ j ≥ 1} are characteristic functions, then

n∏
j=1

φj

is a characteristic function.

If the φj are the characteristic functions for independent random variable Xj , then the product above
is the characteristic function for their sum.

Exercise 6.32. If φ is a characteristic function, then so is |φ|2.

Exercise 6.33. ∣∣∣∣∣∣eix −
n∑

j=0

(ix)j

j!

∣∣∣∣∣∣ ≤ min
{
|x|n+1

(n + 1)!
,
2|x|n

n!

}
.

Hint: Write the error term in Taylor’s theorem in two ways:

in

n!

∫ x

0

(x− t)neit dt =
in+1

(n− 1)!

∫ x

0

(x− t)n−1(eit − 1) dt.

One immediate consequence of this is that

|EeiθX − (1 + iθEX − θ

2
EX2)| ≤ θ2

6
E
[
min{|θ||X|3, 6|X|2}

]
.

Note in addition, that the dominated convergence theorem implies that the expectation on the right tends
to 0 as θ → 0.

Exercise.

1. Let Xi, i = 1, 2 be independent Cau(µi, 0), then X1 + X2 is Cau(µ1 + µ2, 0).

2. Let Xi, i = 1, 2 be independent χ2
a1

, then X1 + X2 is χ2
a1+a2

.

3. Let Xi, i = 1, 2 be independent Γ(αi, β), then X1 + X2 is Γ(α1 + α1, β).

4. Let Xi, i = 1, 2 be independent N(µi, σ
2
i ), then X1 + X2 is N(µ1 + µ2, σ

2
1 + σ2

2).

Example 6.34 (t-distribution). Let {Xj ; 1 ≤ j ≤ n} be independent N(µ, σ2) random variable. Set

X̄ =
1
n

n∑
j=1

Xj , S2 =
1

n− 1

n∑
j=1

(Xj − X̄)2.

Check that
EX̄ = µ, ES2 = σ2.

As before, define

T =
X̄ − µ

S/
√

n
.
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Check that the distribution of T is independent of affine transformations and thus we take the case µ = 0,
σ2 = 1. We have seen that X̄ is N(0, 1/n) and is independent of S2. We have the identity

n∑
j=1

X2
j =

n∑
j=1

(Xj − X̄ + X̄)2 = (n− 1)S2 + nX̄2.

(The cross term is 0.) Now

• the characteristic function of the left equals the characteristic function of the right,

• the left is a χ2
n random variable,

• the terms on the right are independent, and

• the second term is χ2
1.

Thus, by taking characteristic functions, we have that

(1− 2iθ)−n/2 = φ(n−1)S2(θ)(1− 2iθ)−1/2.

Now, divide to see that (n− 1)S2 is χ2
n−1.

We now relate characteristic functions to convergence in distribution. First in dimension 1.

Theorem 6.35 (continuity theorem). Let {νn;n ≥ 1} be probability measures on R with corresponding
characteristic function {φn;n ≥ 1} satisfying

1. limn→∞ φn(θ) exists for all θ ∈ R, and

2. limn→∞ φn(θ) = φ(θ) is continuous at zero. Then there exists ν ∈ P(R) with characteristic function φ
and νn ⇒ ν.

Proof. All that needs to be shown is that the continuity of φ at 0 implies that {νn;n ≥ 1} is tight. This can
be seen from the following argument.

Note that ∫ t

−t

(1− eiθx) dθ = 2t− eitx − e−itx

ix
= 2t− 2 sin tx

x
.

Consequently,

1
t

∫ t

−t

(1− φn(θ)) dθ =
1
t

∫ t

−t

∫
(1− eiθx) νn(dx) dθ

=
∫

1
t

∫ t

−t

(1− eiθx) dθ νn(dx) = 2
∫

(1− sin tx

tx
) νn(dx)

≥ 2
∫
|x|≥2/t

(
1− 1

|tx|

)
νn(dx) ≥ νn

{
x; |x| > 2

t

}
Let ε > 0. By the continuity of φ at 0, we can choose t so that

1
t

∫ t

−t

(1− φ(θ)) dθ <
ε

2
.
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By the bounded convergence theorem, there exists N so that for all n ≥ N ,

ε >
1
t

∫ t

−t

(1− φn(θ)) dθ ≥ νn{x; |x| > 2
t
}

and {νn;n ≥ 1} is tight.

Now, we use can use the following to set the theorem in multidimensions.

Theorem 6.36 (Cramér-Wold devise). Let {Xn;n ≥ 1} be Rd-valued random vectors. Then Xn →D X if
and only if 〈θ, Xn〉 →D 〈θ, X〉 for all θ ∈ Rd.

Proof. The necessity follows by considering the bounded continuous functions hθ(x) = h(〈θ, x〉), h ∈ Cb(S).
If 〈θ, Xn〉 →D 〈θ, X〉, then 〈θ, Xn〉 is tight. Now take θ to be the standard basis vectors e1, . . . , ed and

choose Mk so that
P{−Mk ≤ 〈ek, Xn〉 ≤ Mk} ≥ 1− ε

d
.

Then the compact set K = [−M1,M1]× · · · × [−Mn,Mn] satisfies

P{Xn ∈ K} ≥ 1− ε.

Consequently, {Xn;n ≥ 1} is tight.
Also, 〈θ, Xn〉 →D 〈θ, X〉 implies that

lim
n→∞

E[eis〈θ,Xn〉] = E[eis〈θ,X〉].

To complete the proof, take s = 1 and note that {exp i〈θ, x〉; θ ∈ Rd} is separating.
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7 Central Limit Theorems

7.1 The Classical Central Limit Theorem

Theorem 7.1. Let {Xn;n ≥ 1} be and independent and identically distributed sequence of random variables
having common mean µ and common variance σ2. Write Sn = X1 + · · ·+ Xn, then

Sn − nµ

σ
√

n
→D Z

where Z is a N(0, 1) random variable.

With the use of characteristc functions, the proof is now easy. First replace Xn with Xn − µ to reduce
to the case of mean 0. Then note that if the Xn have characteristic function φ, then

Sn

σ
√

n
has characteristic function φ

(
θ

σ
√

n

)n

Note that

φ

(
θ

σ
√

n

)n

=
(

1− θ2

2n
+ ε

(
θ

σ
√

n

))n

where ε(t)/t2 → 0 as t → 0. Thus,

φ

(
θ

σ
√

n

)n

→ e−θ2/2

and the theorem follows from the continuity theorem. This limit is true for real numbers. Because the
exponential is not one-to-one on the complex plane, this argument needs some further refinement for complex
numbers

Proposition 7.2. Let c ∈ C. Then

lim
n→∞

cn = c implies lim
n→∞

(
1 +

cn

n

)n

= ec.

Proof. We show first quickly establish two claims.

Claim I. Let z1, . . . , zn and w1, . . . , wn be complex numbers whose modulus is bounded above by M .
Then

|z1 · · · zn − w1 · · ·wn| ≤ Mn−1
n∑

j=1

|zj − wj |. (7.1)

For a proof by induction, note that the claim holds for n = 1. For n > 1, observe that

|z1 · · · zn − w1 · · ·wn| ≤ |z1 · · · zn − z1w2 · · ·wn|+ |z1w2 · · ·wn − w1 · · ·wn|
≤ M |z2 · · · zn − w2 · · ·wn|+ Mn−1|z1 − w1|.

Claim II. For w ∈ C, |w| ≤ 1, |ew − (1 + w)| ≤ |w|2.
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ew − (1 + w) =
w2

2!
+

w3

3!
+

w4

4!
+ · · · .

Therefore,

|ew − (1 + w)| ≤ |w|2

2
(1 +

1
2

+
1
22

+ · · · ) = |w|2. (7.2)

Now, choose zk = (1 + cn/n) and wk = exp(cn/n), k = 1, . . . , n. Let γ = sup{|cn|;n ≥ 1}, then
sup{(1 + |cn|/n), exp(|cn|/n);n ≥ 1} ≤ exp γ/n. Thus, as soon as |cn|/n ≤ 1,

|
(
1 +

cn

n

)n

− exp cn| ≤ (exp
γ

n
)n−1n

∣∣∣cn

n

∣∣∣2 ≤ eγ γ2

n
.

Now let n →∞.

Exercise 7.3. For w ∈ C, |w| ≤ 2, |ew − (1 + w)| ≤ 2|w|2.

7.2 Infinitely Divisible Distributions

We have now seen two types of distributions be the limit of sums Sn of triangular arrays

{Xn,k;n ≥ 1, 1 ≤ k ≤ kn}

of independent random variables with limn→∞ kn = ∞.
In the first, we chose kn = n, Xn,k to be Ber(λ/n) and found the sum

Sn →D Y

where Y is Pois(λ).
In the second, we chose kn = n, Xn,k to be Xk/

√
n with Xk having mean 0 and variance one and found

the sum
Sn →D Z

where Z is N(0, 1).
The question arises: Can we see any other convergences and what trianguler arrays have sums that realize

this convergence?

Definition 7.4. Call a random variable X infinitely divisible if for each n, there exists independent and
identically distributed sequence {Xn,k; 1 ≤ k ≤ n} so that the sum Sn = Xn,1 + · · · + Xn,n has the same
distribution as X.

Exercise 7.5. Show that normal, Poisson, Cauchy, and gamma random variable are infinitely divisible.

Theorem 7.6. A random variable S is the weak limit of sums of a triangular array with each row {Xn,k; 1 ≤
k ≤ kn} independent and identically distributed if and only if S is infinitely divisible.
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Proof. Sufficiency follows directly from the definition,

To establish necessity, first, fix an integer K. Because each individual term in the triangular array
converges in distribution to 0 as n →∞, we can assume that kn is a multiple of K. Now, write

Sn = Yn,1 + · · ·+ Yn,K

where Yj,n = X(j−1)kn/K+1,n + · · ·+ Xjkn/K,n are independent and identically distributed.
Note that for y > 0,

P{Yn,1 > y}K =
K∏

j=1

P{Yn,j > y} ≤ P{Sn > Ky}

and
P{Yn,1 < −y}K ≤ P{Sn < −Ky}.

Because the Sn have a weak limit, the sequence is tight. Consequently, {Yn,j ;n ≥ 1} are tight and has a
weak limit along a subsequence

Ymn,j →D Yj

(Note that the same subsequential limit holds for each j.) Thus S has the same distribution as the sum
Y1 + · · ·+ YK

7.3 Weak Convergence of Triangular Arrays

We now characterize an important subclass of infinitely divisible distributions and demonstrate how a tri-
angular array converges to one of these distributions. To be precise about the set up:

For n = 1, 2, . . ., let {Xn,1, . . . , Xn,kn
} be an independent sequence of random variables. Put

Sn = X1,n + · · ·+ Xn,kn
. (7.3)

Write

µn,k = EXn,k, µn =
kn∑

k=1

µn,k, σ2
n,k = Var(Xn,k), σ2

n =
kn∑

k=1

σ2
n,k.

and assume
sup

n
µn < ∞, and sup

n
σ2

n < ∞.

To insure that the variation of no single random variable contributes disproportionately to the sum, we
require

lim
n→∞

( sup
1≤k≤kn

σ2
n,k) = 0.

First, we begin with the characterization:

Theorem 7.7 (Lévy-Khinchin). φ is the characteristic function of an infinitely divisible distribution if and
only if for some finite measure µ and some b ∈ R,

φ(θ) = exp
(

ibθ +
∫

R
(eiθx − 1− iθx)

1
x2

µ(dx)
)

. (7.4)

In addition, this distribution has mean b and variance µ(R).
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This formulation is called the the canonical or Lévy-Khinchin representation of φ. The measure µ is
called the canonical or Lévy measure. Check that the integrand is continuous at 0 with value −θ2/2.

Exercise 7.8. Verify that the characteristic function above has mean b and variance µ(R).

We will need to make several observations before moving on to the proof of this theorem. To begin, we
will need to obtain a sense of closeness for Lévy measures.

Definition 7.9. Let (S, d) be a locally compact, complete and separable metric space and write C0(S) denote
the space of continuous functions that “vanish at infinity” and MF (S) the finite Borel measures on S. For
{µn;n ≥ 1}, µ ∈MF (S), we say that µn converges vaguely to µ and write µm →v µ if

1. supn µn(R) < ∞, and

2. for every h ∈ C0(R),

lim
n→∞

∫
S

h(x) µn(dx) =
∫

S

h(x) µ(dx).

This is very similar to weak convergence and thus we have analogous properties. For example,

1. Let A be a µ continuity set, then
lim

n→∞
µn(A) = µ(A).

2. supn µn(R) < ∞ implies that {µn;n ≥ 1} is relatively compact. This is a stronger statement than
what is possible under weak convergence. The difference is based on the reduction of the space of test
functions from continuous bounded functions to C0(S).

Write eθ(x) = (eiθx − 1− iθx)/x2, eθ(0) = −θ2 Then eθ ∈ C0(R). Thus, if bn → b and µn →v µ, then

lim
n→∞

exp
(

ibnθ +
∫

(eiθx − 1− iθx)
1
x2

µn(dx)
)

= exp
(

ibθ +
∫

(eiθx − 1− iθx)
1
x2

µ(dx)
)

.

Example 7.10. 1. If µ = σ2δ0, then φ(θ) = exp(ibθ−σ2θ2/2), the characteristics function for a N(b, σ2)
random variable.

2. Let N be a Pois(λ) random variable, and set X = x0N , then X is infinitely divisible with characteristic
function

φX(θ) = exp(λ(eiθx0 − 1)) = exp(iθx0λ + (eiθx0 − 1− iθx0)λ).

Thus, this infinitely divisible distribution has mean x0λ and Lévy measure x2
0λδx0

3. More generally consider a compound Poisson random variable

X =
N∑

n=1

ξn
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where the ξn are independent with distribution γ and N is a Pois(λ) random variable independent of
the Xn. Then

φX(θ) = E[E[eiθX |N ]] =
∞∑

n=0

E[exp iθ(ξ1 + · · ·+ ξn)|N = n]P{N = n} =
∞∑

n=0

φγ(θ)n λn

n!
e−λ

= expλ(φγ(θ)− 1) = exp(iθλµγ − λ

∫
(eiθx − 1− iθx) γ(dx).

where µγ =
∫

x γ(dx). This gives the canonical form for the characteristic function with Lev́y measure
µ(dx) = λx2γ(dx). Note that by the conditional variance formula and Wald’s identities:

Var(X) = E[Var(X|N)] + Var(E[X|N ]) = ENσ2
γ + Var(Nµγ)

= λ(σ2
γ + µ2

γ) = λ

∫
x2 γ(dx) = µ(R).

4. For j = 1, . . . , J , let φj be the characteristic function for the canonical form for an infinitely divisible
distribution with Lévy measure µj and mean bj. Then φ1(θ) · · ·φJ(θ) is the characteristic function for
an infinitely divisible random variable whose canonical representation has

mean b =
J∑

j=1

bj , and Lévy measure µ =
J∑

j=1

µj .

Exercise 7.11. 1. Show that the Lévy measure for Exp(1) has density xe−x with respect to Lebesgue
measure.

2. Show that the Lévy measure for Γ(α, 1) has density e−xxα+1/(Γ(α)) with respect to Lebesgue measure.

3. Show that the uniform distribution is not infinitely divisible.

Now we are in a position to show that the representation above is the characteristic function of an
infinitely divisible distribution.

Proof. (Lévy-Khinchin). Define the discrete measures

µn{
j

2n
} = µ(

j

2n
,
j + 1
2n

] for j = −22n,−22n + 1, . . . ,−1, 0, 1, . . . , 22n − 1, 22n,

i.e.,

µn =
2n∑

j=−2n

µ(
j

2n
,
j + 1
2n

]δj/2n .

We have shown that a point mass Lévy measure gives either a normal random variable or a linear transfor-
mation of a Poisson random variable. Thus, by the example above, µ, as the sum of point masses, is the
Lévy measure of an infinitely divisible distribution whose characteristic function has the canonical form.

Write φ̃n for the corresponding characteristic function. Note that µn(R) ≤ µ(R). Moreover, by the
theory of Riemann-Stieltjes integrals, µn →v µ and consequently,

lim
n→∞

φ̃n(θ) = φ(θ).
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Thus, by the continuity theorem, the limit is a characteristic function. Now, write φn to be the characteristic
function with Lévy measure µ replaced by µ/n. Then φn is a characteristics function and φ(θ) = φn(θ)n

and thus φ is the characteristic function of an infinitely divisible distribution.

Let’s rewrite the characteristic function as

φ(θ) = exp

(
ibθ − 1

2
σ2θ2 + λ

∫
R\{0}

(eiθx − 1− iθx)γ(dx)

)
.

where

1. σ2 = µ{0}

2. λ =
∫

R\{0} x−2µ(dx), and

3. γ(A) =
∫

A\{0} x−2 µ(dx)/λ.

Thus, we can represent an infinitely divisible random variable X having finite mean and variance as

X = b− λµγ + σZ +
N∑

n=1

ξn

where

1. b ∈ R,

2. σ ∈ [0,∞),

3. Z is a standard normal random variable,

4. N is a Poisson random variable, parameter λ,

5. {ξn;n ≥ 1} are independent mean µγ random variables with distribution γ, and

6. Z, N , and {ξn;n ≥ 1} are independent.

The following theorem is proves the converse of the theorem above and, at the same time, will help
identify the limiting distribution.

Theorem 7.12. Let ν be the limit law for Sn, the sums of the rows of the triangular array described in
(7.3). Then ν has one of the characteristic functions of the infinitely divisible distributions characterized by
the Lévy-Khinchin formula (7.4).

Proof. Let φn,k denote the characteristics function of Xn,k. By considering Xn,k − µn,k, we can assume the
random variables in the triangular array have mean 0.

Claim.

lim
n→∞

(
kn∏

k=1

φn,k(θ)− exp
kn∑

k=1

(φn,k(θ)− 1)

)
= 0.
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Use the first claim (7.1) in the proof of the classical central limit theorem with zk = φn,k(θ) and wk =
exp(φn,k(θ)− 1) and note that each of the zk and wk have modulus at most 1. Therefore the absolute value
of the terms in the limit above is bound above by

kn∑
k=1

|φn,k(θ)− exp(φn,k(θ)− 1)|.

Next, use the exercise (with w = φn,k(θ)−1, |w| ≤ 2), the second claim (7.2) in that proof (with w =≤iθx)
and the fact that Xn,k has mean zero to obtain

|φn,k(θ)− exp(φn,k(θ)− 1)| ≤ 2|φn,k(θ)− 1|2 = 2|E[eiθXn,k − 1− iθXn,k]| ≤ 2(θ2σ2
n,k)2.

Thus, the sum above is bound above by a constant times

kn∑
k=1

σ4
n,k ≤

(
sup

1≤k≤kn

σ2
n,k

) kn∑
k=1

σ2
n,k ≤

(
sup

1≤k≤kn

σ2
n,k

)(
sup
n≥1

σ2
n

)
and this tends to zero as n →∞ and the claim is established.

Let νn,k denote the distribution of Xn,k, then set

kn∑
k=1

(φn,k(θ)− 1) =
kn∑

k=1

∫
(eiθx − 1− iθx) νn,k(dx) =

∫
(eiθx − 1− iθx)

1
x2

µn(dx)

where µn is the measure defined by

µn(A) =
kn∑

k=1

∫
A

x2 νn,k(dx).

Now set,

φn(θ) = exp
(∫

(eiθx − 1− iθx)
1
x2

µn(dx)
)

.

Then, the limit in the claim can be written

lim
n→∞

φSn(θ)− φn(θ) = 0.

Because supn µn(R) = supn σ2
n < ∞, some subsequence {µnj

; j ≥ 1} converges vaguely to a finite measure
µ and

lim
j→∞

φnj (θ) = exp
(∫

(eiθx − 1− iθx)
1
x2

µ(dx)
)

.

However,
lim

n→∞
φSn

(θ) exists.

and the characteristic function has the canonical form given above.

96



Thus, the vague convergence of µn is sufficient for weak convergences of Sn. We now prove that it is
necessary.

Theorem 7.13. Let Sn be the row sums of mean zero bounded variance triangular arrays. Then the dis-
tribution of Sn converges to infinitely divisible distribution with Lévy measure µ if and only if µn →v µ
where

µn(A) =
kn∑

k=1

∫
A

x2 νn,k(dx) =
kn∑

k=1

E[X2
n,k; {Xn,k ∈ A}]

and νn,k(A) = P{Xn,k ∈ A}.

Proof. All that remains to the shown is the necessity of the vague convergence. Now suppose that

lim
n→∞

φn(θ) = φ(θ)

where φn is the characteristic function of an infinitely divisible distribution with Lévy measure µn. Because
supn µn(R) < ∞, every subsequence {µnj

; j ≥ 1} contains a further subsequence {µnj(`); ` ≥ 1} that
converges vaguely to some µ̃. Set

φ̃(θ) = exp
(∫

(eiθx − 1− iθx)
1
x2

µ̃(dx)
)

.

Because φ = φ̃, we have that φ′ = φ̃′ or

iφ(θ)
∫

(eiθx − 1)
1
x

µ(dx) = iφ̃(θ)
∫

(eiθx − 1)
1
x

µ̃(dx)

Use the fact that φ and φ̃ are never 0 to see that∫
(eiθx − 1)

1
x

µ(dx) =
∫

(eiθx − 1)
1
x

µ̃(dx).

Differentiate again with respect to θ to obtain∫
ieiθx µ(dx) =

∫
ieiθxµ̃(dx).

Thus σ2 = µ(R) = µ̃(R). Now, divide the equation above by σ2/i and use the fact that characteristic
functions uniquely determine the probability measure to show that µ = µ̃.

7.4 Applications of the Lévy-Khinchin Formula

Example 7.14. Let Nλ be Pois(λ), then

Zλ =
Nλ − λ√

λ

has mean zero and variance one and is infinitely divisible with Lévy measure δ1/λ. Because

δ1/λ →v δ0 as λ →∞,

we see that
Zλ ⇒ Z,

a standard normal random variable.
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We can use the theorem to give necessary and sufficient conditions for a triangular array to converge to
a normal random variable.

Theorem 7.15 (Lindeberg-Feller). For the triangular array above,

Sn

σn
→D Z,

a standard normal random variable if and only if for every ε > 0

lim
n→∞

1
σ2

n

kn∑
k=1

E[X2
n,k; {|Xn,k| ≥ εσn}] = 0.

Proof. Define

µn(A) =
1
σ2

n

kn∑
k=1

E[X2
n,k; {Xn,k ∈ A}]

Then the theorem holds if and only if µn →v δ0. Each µn has total mass 1. Thus, it suffices to show that
for every ε > 0

lim
n→∞

µn([−ε, ε]c) = 0

This is exactly the condition above.

The sufficiency of this condition is due to Lindeberg and is typically called the Lindeberg condition. The
necessity of the condition is due to Feller.

Exercise 7.16. Show that the classical central limit theorem follows from the Lindeberg-Feller central limit
theorem.

Example 7.17. Consider the sample space Ω that conists of the n! permutations of the integers {1, . . . , n}
and define a probability that assigns 1/n! to each of the outcomes in Ω.

Define Yn,j(ω) to be the number of inversions caused by j in a given permutation ω. In other words,
Yn,j(ω) = k if and only if j precedes exactly k of the integers 1, . . . , j − 1 in ω.

Claim. For each n, {Yn,j ; 1 ≤ j ≤ n} are independent and satisfy

P{Yn,j = k} =
1
j
, for 0 ≤ k ≤ j − 1.

Note that the values of Yn,1, . . . , Yn,j are determined as soon as the positions of the integers 1, . . . , j are
known. Given any j designated positions among the n ordered slots, the number of permutations in which
1, . . . , j occupy these positions in some order is j!(n − j)!. Among these pemutations, the number in which
j occupies the k-th position is (j − 1)!(n− j)!. The remaining values 1, . . . , j − 1 can occupy the remaining
positions in (j−1)! distinct ways. Each of these choice corresponds uniquely to a possible value of the random
vector

(Yn,1, . . . , Yn,j−1).

On the other hand, the number of possible values is 1 × 2 × · · · × (j − 1) = (j − 1)! and the mapping
between permutations and the possible values of the j-tuple above is a one-to-one correspondence.

In summary, for any distinct value (i1, . . . , ij−1), the number of permutations ω in which
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1. 1, . . . , j occupy the given positions, and

2. Yn,1(ω) = i1, . . . , Yn,j−1(ω) = ij−1, Yn,j(ω) = k

is equal to (n− j)!. Hence the number of permutations satisfying the second condition alone is equal to(
n

j

)
(n− j)! =

n!
j!

.

Sum this over the values of k = 0, . . . , j − 1, we obtain that the number of permutations satisfying

Yn,1(ω) = i1, . . . , Yn,j−1(ω) = ij−1

is
j
n!
j!

=
n!

(j − 1)!
.

Therefore,

P{ω;Yn,j(ω) = k|Yn,1(ω) = i1, . . . , Yn,j−1(ω) = ij−1} =
n!
j!

n!
(j−1)!

=
1
j
,

proving the claim.

This gives

EYn,j =
j − 1

2
, Var(Yn,j) =

j2 − 1
12

,

and letting Tn denote the sum of the n-th row,

ETn ≈
n2

2
, Var(Tn) ≈ n3

36
.

Note that for any ε > 0, we have for sufficiently large n

|Yn,j − EYn,j | ≤ j − 1 ≤ n− 1 ≤ ε
√

Var(Tn)

Set
Xn,k =

Yn,j − EYn,j√
Var(Tn)

.

Then σ2
n = 1 and the Lindeberg condition applies. Thus

Tn − n2

4
n3/2

6

→D Z,

a standard normal.

A typical sufficient condition for the central limit theorem is the Lyapounov condition given below.
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Theorem 7.18 (Lyapounov). For the triangular array above, suppose that

lim
n→∞

1
σ2+δ

n

kn∑
k=1

E[|Xn,k|2+δ] = 0.

Then
Sn

σn
→D Z,

a standard normal random variable.

Proof. We show that the Lyapounov condition implies the Lindeberg condition by showing that a fixed
multiple of each term in the Lyapounov condition is larger than the corresponding term in the Lindeberg
condition.

1
σ2

n

E[X2
n,k; {|Xn,k| ≥ εσn}] ≤

1
σ2

n

E[X2
n,k

(
|Xn,k|
εσn

)δ

; {|Xn,k| ≥ εσn}] ≤
1

εδσ2+δ
n

E[|Xn,k|2+δ].

Example 7.19. Let {Xk; k ≥ 1} be independent random variables, Xk is Ber(pk). Assume that

a2
n =

n∑
k=1

Var(Xk) =
n∑

k=1

pk(1− pk)

has an infinite limit. Consider the triangular array with Xn,k = (Xk − pk)/an and write Sn = Xn,1 + · · ·+
Xn,n. We check Lyapounov’s condition with δ = 1.

E|Xk − pk|3 = (1− pk)3pk + p3
k(1− pk) = pk(1− pk)((1− pk)2 + p2

k) ≤ 2pk(1− pk).

Then, σ2
n = 1 for all n and

1
σ3

n

n∑
k=1

E[|Xn,k|3] ≤
2
a3

n

n∑
k=1

pk(1− pk) ≤ 2
an

.

We can also use the Lévy-Khinchin theorem to give necessary and sufficient conditions for a triangular
array to converge to a Poisson random variable. We shall use this in the following example.

Example 7.20. For each n, let {Yn,k; 1 ≤ kn} be independent Ber(pn,k) random variables and assume that

lim
n→∞

kn∑
k=1

pn,k = λ

and
lim

n→∞
sup

1≤k≤kn

pn,k = 0.

Note that

|σ2
n − λ| ≤ |

kn∑
k=1

pn,k(1− pn,k)−
kn∑

k=1

pn,k|+ |
kn∑

k=1

pn,k − λ|.
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Now the first term is equal to
kn∑

k=1

p2
n,k ≤

(
sup

1≤k≤kn

pn,k

) kn∑
k=1

pn,k (7.5)

which has limit zero.
The second term has limit zero by hypothesis. Thus,

lim
n→∞

σ2
n = λ

Set

Sn =
kn∑

k=1

Yn,k.

Then
Sn →D N,

a Pois(λ)-random variable if and only if the measures

µn(A) =
kn∑

k=1

E[(Yn,k − pn,k)2; {(Yn,k − pn,k) ∈ A}]

converges vaguely to λδ1.
We have that

lim
n→∞

µn(R) = lim
n→∞

σ2
n = λ.

Thus, all that is left to show is that

lim
n→∞

µn([1− ε, 1 + ε]c) = 0.

So, given ε > 0, choose N so that sup1≤k≤kn
pn,k < ε for all n > N . Then

{|Yn,k − pn,k − 1| > ε} = {Yn,k = 0}

Thus,

µn([1− ε, 1 + ε]c) =
kn∑

k=1

E[(Yn,k − pn,k)2; {Yn,k = 0}] =
kn∑

k=1

E[p2
n,k; {Yn,k = 0}] ≤

kn∑
k=1

p2
n,k.

We have previously shown in (7.5) that the limit as n →∞ and the desired vague convergence holds.
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