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1 Simple linear regression

We now consider two dimensional data. The values of the first variable x1, o, . .., x, are assumed known and
in an experiment are often set by the experimenter. These variables are called the explanatory variable
and in a two dimensional scatterplot of the data are values on the horizontal axis. The values y1,v2 .- ., Ym,
taken from observations with input z1,zo,...,z, are called the response variable and are values on the
vertical axis. In linear regression, the response variable linearly related to the explanatory variable, but
is subject to error.

yi =PBo+ Pz +e, i=1,2,....n

The errors {¢;;1 < i < n} are assumed to be independent mean zero random variable. The most common
assumption is that they are normal with an unknown variance.
Thus, simple linear regression is a three parameter model

0 = {(Bo, 51,0%); Bo, f1 € R, 0% > 0}.
The likelihood,
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The least square regression line uses the maximum likelihood estimates Bo, Bl to make a prediction
y; based on x;, the value of the explanatory variable.

Yi = Bo + Brw.
to maximize the likelihood,we take derivatives.
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and at the maximum likelihood estimate,
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Now, multiply equation (1) by Z and subtract from equation (2) to obtain

Ty — 2y = fi(2? — (2)°,  Cov(x.y) = frVar(w)
Write s2 and si for the sample variance of x and y. Recall that the correlation
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Equation (1) tells us that the center of mass(Z, 7) lies on the regression line. Consequently, we can write the
regression line in point slope form as
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In words, if we standardize the explanatory and response variables, the the regression line contains the origin
and has slope equal to the correlation of the explanatory and response variables.
For the maximum likelihood for the variance of the €;, we have
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and, therefore, the maximum likelihood estimator.
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The unbiased estimator

= Bo = Pr).

For a given data entry, the difference
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is called the residual.
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We generate 50 pairs of independent standard normal random variable with correlation r = 0.9.

x<-rnorm(50)

z<-rnorm(50)

r =0.9

y<-r*x +sqrt(1-r-2)*z
plot(x,y,x1lim=c(-3,3) ,ylim=c(-3,3))
myline.fit <- 1m(y ~ x)

summary (myline.fit)

V V V V V V V

Call:
Im(formula = y ~ x)

Residuals:
Min 1Q Median 3Q Max
-1.04313 -0.36433 0.06956 0.28016 0.75557

Coefficients:

Estimate Std. Error t value Pr(>lt])
(Intercept) 0.03577 0.06672 0.536 0.594
X 0.87970 0.06805 12.927 <2e-16 **x

Signif. codes: 0O ’x*%%’ 0.001 ’xx’ 0.01 ’x> 0.05 ’.” 0.1’ ’ 1

Residual standard error: 0.4715 on 48 degrees of freedom
Multiple R-Squared: 0.7769,Adjusted R-squared: 0.7722
F-statistic: 167.1 on 1 and 48 DF, p-value: < 2.2e-16



2 Multiple Linear Regression
Now, we consider the case in which the explanatory variables x1,- - , X, where x; = (1, ..., ZTi)-
The response variable linearly related to the explanatory variable, but is subject to error.
yi =Bo+xib+ -+ Brri + &, i=12,....n

The errors {€;;1 < i < n} are again assumed to be independent mean zero normal random variables with
an unknown variance, o2. Now, regression is a k 4+ 2 parameter model

92{(5702);56Rk+170—220}7 ﬁ:(ﬁ(hﬂlw”vﬁk) (3)
The likelihood,
L(B.0%y) = = exp (=i S o — iy — o G’
, , (2mo2)n/2 202 & ! " Y
We can write this in matrix notation. Set
1z -0 oz
1 @wor -+ 9
X =
1 Tnl e Tnk



Then

1nL(ﬁ,02|x,y) = —g(ln27r + anQ) — %(y — Xﬁ)T(y - Xp)

and
Vﬁ h’lL(ﬂ, U2|X7Y) = (y - Xﬂ)TX

To find the maximim likelihood estimator B
(y—XB)TXx =0 yx=p"Xx"TX.
If X7 X is invertible, then we take the transpose to obtain
XTxp=x"y, pB=XTX)"'xTy.
The maximum likelihood for the variance of the ¢; is similar as the one-dimensional case.
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and, therefore, the maximum likelihood estimator.

o~

olymLE = ! (y - XB)T(Y - Xﬁ)-

n

The unbiased estimator
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oy = m(y - Xﬂ)T(y - Xp).

3 Properties of least square estimates

Property 1. The likelihood function is maximized at 3. Equivalently, the least square (y — X3)7 (y — X 3)
is minimized at this point.

Property 2. /3 is an unbiased estimator of 3.

From equation (3), we find that the expected value

Bp Y = XB.
Then R
Eso2f=FEp 2 [(XTX) ' XTY]) = (XTX) ' XTEp oY = (XTX) ' XTXB = 1.
For a vector valued random variable, £ = (&1,...,&,), define the covariance matrix Cov(§) to be the

n X n matrix having entries

COV(f)ij = COV(gi; fj)

If € has mean vector p, we can write this in matrix form as

Cov(§) = E(€ — (€ — )"



Check that for any n x n matrix A.
Cov(A€) = ACov(€)AT.

We also have that [?1 is a uniformly minimum variance unbiased estimator.
Property 3. Cov(3) = o2(XTX)" 1.
Again, returning to equation (3), we see that
2 . . .
_Joo® ifi=y,
COV(Y%Y)_{O if i j.

Consequently, Cov(Y) = 021, where I is the n x n identity matrix.
Now

Cov(XTX)'XTY) = (XTX) ' XTCov(Y) X (XTX) ™!
AXTX)IXTX(XTX) ' =o?(XTX)™ 1.
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