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1 Probability

A probability model has two essential pieces of its description.
e 2, the probability or sample space, is the set of possible outcomes.
— An event is a subset of the sample space

AcCQ.

— a collection of outcomes, {w;w € A}
e P, the probability assigns a number to each event.

Let €2 be a sample space {w1,...,w,} and for A C €, let |A| denote the number of elements in A. Then
the probability associated with equally likely events

_ A

P(A) = g1

reports the fraction of outcomes in 2 that are also in A.

Some facts are immediate:

1.
0< P(A) <1 (1)
2. If AN B =0, then
P(AUB) = P(A) + P(B). (2)
3.
P() =1 (3)

From these facts, we can derive several others:

Exercise 1. 1. If Ay,..., Ay are pairwise disjoint or mutually exclusive, (A, NA; =0 if i # j.)

then
P(AyUAU---UA,) = P(A1) + P(As) + -+ P(Ag).



2. (inclusion-exlusion) For any two events A and B,

P(AUB)=P(A)+ P(B)— P(AN B).

3. If A C B then P(A) < P(B).
4. Letting A® denote the complement of A, then P(A°) =1— P(A).

So, now we know that the range of the function we call the probability is a subset of the interval [0,1].

In order to use calculus ideas, we extend equation (3) to a countable collection if {A;;j > 1} ofpairwise

disjoint events and require that

P4 =D Pwy.
j=1 j=1

(2)

Any function P that accepts events as its domain and returns numbers for its range and satisfies (1), (2),

and (3’) is a called a probability.

Exercise 2 (Continuity property of probability). If the events By C By C - -+

P(B) = lim P(B;).

j—o0
and if the events Cy D Co C -+ and C =N;Cj, then

P(C) = lim P(C}).

Jj—0o0

2 Independence and Conditional Probability

Definition 3. 1. Two events A and B are called independent if
P(ANB) = P(A)- P(B)

The conditional probability of B given A,

p(Bla) = ZBOA) Sf(z)A)

Often this formula is used in the form P(B N A) = P(B|A)P(A).
Thus, if B and A are independent P(B|A) = P(B).

Exercise 4 (Bayes formula).

p(B|4) = ZADIED) (Aga]; (B)

and B = U;Bj, then



3 Random Variables and Distribution Functions

Definition 5. A random variable X is a function whose domain is the probability space. The range space
S of X 1is called the state space.

Definition 6. If X : Q — R, then the distribution function is given by
Fx(z) = P{X < z}. (8).

Theorem 7. Any distribution function has the following properties.

1. Fx 1is nondecreasing.

2. limy oo Fx(z) =1, lim, o Fx(z) =0.

3. Fx 1is right continuous.

4. Set Fx(z—) =limy,_.,— Fx(p). Then Fx(z—) = P{X < z}.

5 P{X =z} =F(x)— F(z—).

The multidimensional or joint distribution function F for the random vector (X7, ..., X, ), defined
by
F(zy,...,z,) = P{X3 <21,...,X, <z,},

has properties analogous to the one dimensional distribution function.
Definition 8. Let X : Q@ — R be a random variable. Call X
1. discrete if there exists a countable set D so that P{X € D} =1,
2. continuous if the distribution function F has a derivative.

For discrete random variable define the mass function,
p(z) = P{X =z} (8)

In this case,

F) = 3 pls).

seD,s<x

Thus, the distribution is constant except for jumps.
The requirements for a mass function are that p(z) > 0 for all z € D and

1= Z p(s).
seD
Discrete random variables will be defined by giving their mass function.

Continuous random variable have distributions with a derivative, which we also denote by f and call the
density function. in this case,

Fa)= [ s



Thus, the requirements for a density are that f(z) > 0 for all z € R and

1= /_Zﬂs) ds.

Generally speaking, we shall use the density function to describe the distribution of a random variable.

Exercise 9. If X and Y are independent integer valued random variables with mass functions px and py,
then X +Y has mass function

pxtv(s) =D px(z)py (s — ).

Exercise 10. If X and Y are real valued random variables with density functions fx and fy, then X +Y
has density function

—+o00
Fav(s) = / (@) fy (s — ) da.

— 00

4 Examples of Discrete Random Variables

1.

(Bernoulli) Ber(p), D ={0,1}
plz) =p"(L—p)' ="

(binomial) Bin(n,p), D ={0,1,...,n}

So Ber(p) is Bin(1,p).

(geometric) Geo(p), D =N
p(z) = p(1 —p)*.

. (hypergeometric) Hyp(N,n,k), D = {max{0,n — N + k},...,min{n,k}}

n\ (N—n
)
For a hypergeometric random variable, consider an urn with N balls, k green. Choose n and let X be
the number of green under equally likely outcomes for choosing each subset of size n.

p(z) =

(negative binomial) Negbin(n,p), D =N

ple) = (n e 1)1?”(1 —p)"

x
Note that Geo(p) is Negbin(1,p).
(Poisson) Pois(\), D =N,



7. (uniform) U(a,b), D = {a,a+1,...,b},

1
b—a+1"

p(x) =

Exercise 11. Check that ) ., f(x) =1 in the ezamples above.

5 Examples of Continuous Random Variables

1. (beta) Beta(a, 8) on [0,1],

3. (chi-squared) x2 on [0, o)
xa/Z—l

1@) = (a2 e

4. (exponential) Exzp(f) on [0, c0),
f(z) =6e%.

5. (Fisher’s F') F, , on [0,00),

_ D((g+a)/2q"%a"?

= raare (ot gay e

6. (gamma) I'(a, 5) on [0, 00),
flx) = s z@ e P,

I(a)
Observe that Exp(0) is T'(1,0).
7. (inverse gamma) I'"(c, 8) on [0, 00),
_ ﬁa —a—1_—08/x
8. (Laplace) Lap(u,o) on R,
1
— e lz—pl/e

fla) = goeTleme

9. (normal) N(u,0?) on R,
_ 1 (x —p)?
fla) = e (<520,



10. (Pareto) Par(a,c) on [c, 00),
flz) = Zotl

11. (Student’s t) t,(u,0?%) on R,

~ I((a+1)/2) (z— p)? —(a+1)/2
f(z) JorT(a/2)0 (1 + ) _

12. (uniform) U(a,b) on [a,b],

Example 12 (probability transform). Let the distribution function F for X be continuous and strictly
increasing, then F(X) is a U(0,1) random variable.
If0<u<1, then

P{F(X)<u}=P{X < F '(u)}=F(F '(u)=u.

Exercise 13. Let X be a continuous random variable with density function fx. Let g : R — R be a
monotonic differentiable function, then Y = g(X) has density

Fr() = Fx (g™ ) ;;g*(y)\ .



