Review of Probability Theory I

January 22-24, 2008

1 Probability

A probability model has two essential pieces of its description.

- Ω , the **probability** or **sample space**, is the set of possible outcomes.
 - An **event** is a subset of the sample space

 $A \subset \Omega$.

- a collection of **outcomes**, $\{\omega; \omega \in A\}$
- *P*, the **probability** assigns a number to each event.

Let Ω be a sample space $\{\omega_1, \ldots, \omega_n\}$ and for $A \subset \Omega$, let |A| denote the number of elements in A. Then the probability associated with *equally likely events*

$$P(A) = \frac{|A|}{|\Omega|}.$$

reports the fraction of outcomes in Ω that are also in A.

Some facts are immediate:

1.

$$0 \le P(A) \le 1 \tag{1}$$

2. If $A \cap B = \emptyset$, then

$$P(A \cup B) = P(A) + P(B).$$
⁽²⁾

3.

$$P(\Omega) = 1. \tag{3}$$

From these facts, we can derive several others:

Exercise 1. 1. If A_1, \ldots, A_k are pairwise disjoint or mutually exclusive, $(A_i \cap A_j = \emptyset \text{ if } i \neq j.)$ then

$$P(A_1 \cup A_2 \cup \dots \cup A_k) = P(A_1) + P(A_2) + \dots + P(A_k)$$

2. (inclusion-exlusion) For any two events A and B,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

- 3. If $A \subset B$ then $P(A) \leq P(B)$.
- 4. Letting A^c denote the complement of A, then $P(A^c) = 1 P(A)$.

So, now we know that the range of the function we call the probability is a subset of the interval [0,1].

In order to use calculus ideas, we extend equation (3) to a countable collection if $\{A_j; j \ge 1\}$ of pairwise disjoint events and require that

$$P\left(\bigcup_{j=1}^{\infty} A_j\right) = \sum_{j=1}^{\infty} P(A_j).$$
(2')

Any function P that accepts events as its domain and returns numbers for its range and satisfies (1), (2), and (3') is a called a probability.

Exercise 2 (Continuity property of probability). If the events $B_1 \subset B_2 \subset \cdots$ and $B = \bigcup_j B_j$, then

$$P(B) = \lim_{j \to \infty} P(B_j).$$
(4a)

and if the events $C_1 \supset C_2 \subset \cdots$ and $C = \cap_j C_j$, then

$$P(C) = \lim_{j \to \infty} P(C_j).$$
^(4b)

2 Independence and Conditional Probability

Definition 3. 1. Two events A and B are called independent if

$$P(A \cap B) = P(A) \cdot P(B) \tag{5}$$

The conditional probability of B given A,

$$P(B|A) = \frac{P(B \cap A)}{P(A)} \tag{6}$$

Often this formula is used in the form $P(B \cap A) = P(B|A)P(A)$. Thus, if B and A are independent P(B|A) = P(B).

Exercise 4 (Bayes formula).

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$
(7)

3 Random Variables and Distribution Functions

Definition 5. A random variable X is a function whose domain is the probability space. The range space S of X is called the state space.

Definition 6. If $X : \Omega \to \mathbb{R}$, then the distribution function is given by

$$F_X(x) = P\{X \le x\}. \tag{8}$$

Theorem 7. Any distribution function has the following properties.

- 1. F_X is nondecreasing.
- 2. $\lim_{x \to \infty} F_X(x) = 1$, $\lim_{x \to -\infty} F_X(x) = 0$.
- 3. F_X is right continuous.
- 4. Set $F_X(x-) = \lim_{p \to x-} F_X(p)$. Then $F_X(x-) = P\{X < x\}$.
- 5. $P{X = x} = F(x) F(x-)$.

The **multidimensional** or **joint distribution function** F for the random vector (X_1, \ldots, X_n) , defined by

$$F(x_1,\ldots,x_n) = P\{X_1 \le x_1,\ldots,X_n \le x_n\},\$$

has properties analogous to the one dimensional distribution function.

Definition 8. Let $X : \Omega \to \mathbb{R}$ be a random variable. Call X

- 1. discrete if there exists a countable set D so that $P\{X \in D\} = 1$,
- 2. continuous if the distribution function F has a derivative.

For discrete random variable define the mass function,

$$p(x) = P\{X = x\} \tag{8}$$

In this case,

$$F(x) = \sum_{s \in D, s \le x} p(s)$$

Thus, the distribution is constant except for jumps.

The requirements for a mass function are that $p(x) \ge 0$ for all $x \in D$ and

$$1 = \sum_{s \in D} p(s).$$

Discrete random variables will be defined by giving their mass function.

Continuous random variable have distributions with a derivative, which we also denote by f and call the **density function**. in this case,

$$F(x) = \int_{-\infty}^{x} f(s) \, ds.$$

Thus, the requirements for a density are that $f(x) \ge 0$ for all $x \in \mathbb{R}$ and

$$1 = \int_{-\infty}^{\infty} f(s) \, ds.$$

Generally speaking, we shall use the density function to describe the distribution of a random variable.

Exercise 9. If X and Y are independent integer valued random variables with mass functions p_X and p_Y , then X + Y has mass function

$$p_{X+Y}(s) = \sum_{x} p_X(x) p_Y(s-x).$$

Exercise 10. If X and Y are real valued random variables with density functions f_X and f_Y , then X + Y has density function

$$f_{X+Y}(s) = \int_{-\infty}^{+\infty} f_X(x) f_Y(s-x) \ dx.$$

4 Examples of Discrete Random Variables

1. (Bernoulli) $Ber(p), D = \{0, 1\}$

$$p(x) = p^x (1-p)^{1-x}.$$

2. (binomial) $Bin(n,p), D = \{0, 1, ..., n\}$

$$p(x) = \binom{n}{x} p^x (1-p)^{n-x}.$$

So Ber(p) is Bin(1, p).

3. (geometric) $Geo(p), D = \mathbb{N}$

$$p(x) = p(1-p)^x.$$

4. (hypergeometric) $Hyp(N, n, k), D = \{\max\{0, n - N + k\}, \dots, \min\{n, k\}\}$

$$p(x) = \frac{\binom{n}{x}\binom{N-n}{k-x}}{\binom{N}{n}}.$$

For a hypergeometric random variable, consider an urn with N balls, k green. Choose n and let X be the number of green under equally likely outcomes for choosing each subset of size n.

5. (negative binomial) $Negbin(n, p), D = \mathbb{N}$

$$p(x) = \binom{n+x-1}{x} p^n (1-p)^x.$$

Note that Geo(p) is Negbin(1, p).

6. (Poisson) $Pois(\lambda), D = \mathbb{N},$

$$p(x) = \frac{\lambda^x}{x!} e^{-\lambda}.$$

7. (uniform) $U(a, b), D = \{a, a + 1, \dots, b\},\$

$$p(x) = \frac{1}{b-a+1}$$

Exercise 11. Check that $\sum_{x \in D} f(x) = 1$ in the examples above.

5 Examples of Continuous Random Variables

1. (beta) $Beta(\alpha, \beta)$ on [0, 1],

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}.$$

2. (Cauchy) $Cau(\mu, \sigma^2)$ on $(-\infty, \infty)$,

$$f(x) = \frac{1}{\sigma \pi} \frac{1}{1 + (x - \mu)^2 / \sigma^2}.$$

3. (chi-squared) χ^2_a on $[0,\infty)$

$$f(x) = \frac{x^{a/2-1}}{2^{a/2}\Gamma(a/2)}e^{-x/2}.$$

4. (exponential) $Exp(\theta)$ on $[0,\infty)$,

$$f(x) = \theta e^{-\theta x}$$

5. (Fisher's F) $F_{q,a}$ on $[0,\infty)$,

$$f(x) = \frac{\Gamma((q+a)/2)q^{q/2}a^{a/2}}{\Gamma(q/2)\Gamma(a/2)}x^{q/2-1}(a+qx)^{-(q+a)/2}.$$

6. (gamma) $\Gamma(\alpha,\beta)$ on $[0,\infty)$,

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}$$

Observe that $Exp(\theta)$ is $\Gamma(1, \theta)$.

7. (inverse gamma) $\Gamma^{-1}(\alpha,\beta)$ on $[0,\infty)$,

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha - 1} e^{-\beta/x}.$$

8. (Laplace) $Lap(\mu, \sigma)$ on \mathbb{R} ,

$$f(x) = \frac{1}{2\sigma} e^{-|x-\mu|/\sigma}.$$

9. (normal) $N(\mu, \sigma^2)$ on \mathbb{R} ,

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right).$$

10. (Pareto) $Par(\alpha, c)$ on $[c, \infty)$,

$$f(x) = \frac{c^{\alpha}\alpha}{x^{\alpha+1}}.$$

11. (Student's t) $t_a(\mu, \sigma^2)$ on \mathbb{R} ,

$$f(x) = \frac{\Gamma((a+1)/2)}{\sqrt{\alpha\pi}\Gamma(\alpha/2)\sigma} \left(1 + \frac{(x-\mu)^2}{a\sigma^2}\right)^{-(a+1)/2}.$$

12. (uniform) U(a, b) on [a, b],

$$f(x) = \frac{1}{b-a}.$$

Example 12 (probability transform). Let the distribution function F for X be continuous and strictly increasing, then F(X) is a U(0,1) random variable.

If $0 \le u \le 1$, then

$$P\{F(X) \le u\} = P\{X \le F^{-1}(u)\} = F(F^{-1}(u)) = u.$$

Exercise 13. Let X be a continuous random variable with density function f_X . Let $g : \mathbb{R} \to \mathbb{R}$ be a monotonic differentiable function, then Y = g(X) has density

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|.$$