Review of Probability Theory I

January 22-24, 2008

1 Probability

A probability model has two essential pieces of its description.

- Ω, the probability or sample space, is the set of possible outcomes.
- An event is a subset of the sample space

$$
A \subset \Omega
$$

- a collection of outcomes, $\{\omega ; \omega \in A\}$
- P, the probability assigns a number to each event.

Let Ω be a sample space $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ and for $A \subset \Omega$, let $|A|$ denote the number of elements in A. Then the probability associated with equally likely events

$$
P(A)=\frac{|A|}{|\Omega|}
$$

reports the fraction of outcomes in Ω that are also in A.
Some facts are immediate:
1.

$$
\begin{equation*}
0 \leq P(A) \leq 1 \tag{1}
\end{equation*}
$$

2. If $A \cap B=\emptyset$, then

$$
\begin{equation*}
P(A \cup B)=P(A)+P(B) \tag{2}
\end{equation*}
$$

3.

$$
\begin{equation*}
P(\Omega)=1 \tag{3}
\end{equation*}
$$

From these facts, we can derive several others:
Exercise 1. 1. If A_{1}, \ldots, A_{k} are pairwise disjoint or mutually exclusive, $\left(A_{i} \cap A_{j}=\emptyset\right.$ if $i \neq j$.) then

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+\cdots+P\left(A_{k}\right)
$$

2. (inclusion-exlusion) For any two events A and B,

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

3. If $A \subset B$ then $P(A) \leq P(B)$.
4. Letting A^{c} denote the complement of A, then $P\left(A^{c}\right)=1-P(A)$.

So, now we know that the range of the function we call the probability is a subset of the interval $[0,1]$.
In order to use calculus ideas, we extend equation (3) to a countable collection if $\left\{A_{j} ; j \geq 1\right\}$ ofpairwise disjoint events and require that

$$
P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)
$$

Any function P that accepts events as its domain and returns numbers for its range and satisfies (1), (2), and $\left(3^{\prime}\right)$ is a called a probability.

Exercise 2 (Continuity property of probability). If the events $B_{1} \subset B_{2} \subset \cdots$ and $B=\cup_{j} B_{j}$, then

$$
\begin{equation*}
P(B)=\lim _{j \rightarrow \infty} P\left(B_{j}\right) \tag{4a}
\end{equation*}
$$

and if the events $C_{1} \supset C_{2} \subset \cdots$ and $C=\cap_{j} C_{j}$, then

$$
\begin{equation*}
P(C)=\lim _{j \rightarrow \infty} P\left(C_{j}\right) \tag{4b}
\end{equation*}
$$

2 Independence and Conditional Probability

Definition 3. 1. Two events A and B are called independent if

$$
\begin{equation*}
P(A \cap B)=P(A) \cdot P(B) \tag{5}
\end{equation*}
$$

The conditional probability of B given A,

$$
\begin{equation*}
P(B \mid A)=\frac{P(B \cap A)}{P(A)} \tag{6}
\end{equation*}
$$

Often this formula is used in the form $P(B \cap A)=P(B \mid A) P(A)$.
Thus, if B and A are independent $P(B \mid A)=P(B)$.
Exercise 4 (Bayes formula).

$$
\begin{equation*}
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)} \tag{7}
\end{equation*}
$$

3 Random Variables and Distribution Functions

Definition 5. A random variable X is a function whose domain is the probability space. The range space S of X is called the state space.

Definition 6. If $X: \Omega \rightarrow \mathbb{R}$, then the distribution function is given by

$$
\begin{equation*}
F_{X}(x)=P\{X \leq x\} \tag{8}
\end{equation*}
$$

Theorem 7. Any distribution function has the following properties.

1. F_{X} is nondecreasing.
2. $\lim _{x \rightarrow \infty} F_{X}(x)=1, \lim _{x \rightarrow-\infty} F_{X}(x)=0$.
3. F_{X} is right continuous.
4. Set $F_{X}(x-)=\lim _{p \rightarrow x-} F_{X}(p)$. Then $F_{X}(x-)=P\{X<x\}$.
5. $P\{X=x\}=F(x)-F(x-)$.

The multidimensional or joint distribution function F for the random vector (X_{1}, \ldots, X_{n}), defined by

$$
F\left(x_{1}, \ldots, x_{n}\right)=P\left\{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right\}
$$

has properties analogous to the one dimensional distribution function.
Definition 8. Let $X: \Omega \rightarrow \mathbb{R}$ be a random variable. Call X

1. discrete if there exists a countable set D so that $P\{X \in D\}=1$,
2. continuous if the distribution function F has a derivative.

For discrete random variable define the mass function,

$$
\begin{equation*}
p(x)=P\{X=x\} \tag{8}
\end{equation*}
$$

In this case,

$$
F(x)=\sum_{s \in D, s \leq x} p(s)
$$

Thus, the distribution is constant except for jumps.
The requirements for a mass function are that $p(x) \geq 0$ for all $x \in D$ and

$$
1=\sum_{s \in D} p(s)
$$

Discrete random variables will be defined by giving their mass function.
Continuous random variable have distributions with a derivative, which we also denote by f and call the density function. in this case,

$$
F(x)=\int_{-\infty}^{x} f(s) d s
$$

Thus, the requirements for a density are that $f(x) \geq 0$ for all $x \in \mathbb{R}$ and

$$
1=\int_{-\infty}^{\infty} f(s) d s
$$

Generally speaking, we shall use the density function to describe the distribution of a random variable.
Exercise 9. If X and Y are independent integer valued random variables with mass functions p_{X} and p_{Y}, then $X+Y$ has mass function

$$
p_{X+Y}(s)=\sum_{x} p_{X}(x) p_{Y}(s-x)
$$

Exercise 10. If X and Y are real valued random variables with density functions f_{X} and f_{Y}, then $X+Y$ has density function

$$
f_{X+Y}(s)=\int_{-\infty}^{+\infty} f_{X}(x) f_{Y}(s-x) d x
$$

4 Examples of Discrete Random Variables

1. (Bernoulli) $\operatorname{Ber}(p), D=\{0,1\}$

$$
p(x)=p^{x}(1-p)^{1-x}
$$

2. (binomial) $\operatorname{Bin}(n, p), D=\{0,1, \ldots, n\}$

$$
p(x)=\binom{n}{x} p^{x}(1-p)^{n-x} .
$$

So $\operatorname{Ber}(p)$ is $\operatorname{Bin}(1, p)$.
3. (geometric) $\operatorname{Geo}(p), D=\mathbb{N}$

$$
p(x)=p(1-p)^{x} .
$$

4. (hypergeometric) $\operatorname{Hyp}(N, n, k), D=\{\max \{0, n-N+k\}, \ldots, \min \{n, k\}\}$

$$
p(x)=\frac{\binom{n}{x}\binom{N-n}{k-x}}{\binom{N}{n}}
$$

For a hypergeometric random variable, consider an urn with N balls, k green. Choose n and let X be the number of green under equally likely outcomes for choosing each subset of size n.
5. (negative binomial) $\operatorname{Negbin}(n, p), D=\mathbb{N}$

$$
p(x)=\binom{n+x-1}{x} p^{n}(1-p)^{x} .
$$

Note that $\operatorname{Geo}(p)$ is $\operatorname{Negbin}(1, p)$.
6. (Poisson) $\operatorname{Pois}(\lambda), D=\mathbb{N}$,

$$
p(x)=\frac{\lambda^{x}}{x!} e^{-\lambda}
$$

7. (uniform) $U(a, b), D=\{a, a+1, \ldots, b\}$,

$$
p(x)=\frac{1}{b-a+1} .
$$

Exercise 11. Check that $\sum_{x \in D} f(x)=1$ in the examples above.

5 Examples of Continuous Random Variables

1. (beta) $\operatorname{Beta}(\alpha, \beta)$ on $[0,1]$,

$$
f(x)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} x^{\alpha-1}(1-x)^{\beta-1}
$$

2. (Cauchy) $\operatorname{Cau}\left(\mu, \sigma^{2}\right)$ on $(-\infty, \infty)$,

$$
f(x)=\frac{1}{\sigma \pi} \frac{1}{1+(x-\mu)^{2} / \sigma^{2}}
$$

3. (chi-squared) χ_{a}^{2} on $[0, \infty)$

$$
f(x)=\frac{x^{a / 2-1}}{2^{a / 2} \Gamma(a / 2)} e^{-x / 2}
$$

4. (exponential) $\operatorname{Exp}(\theta)$ on $[0, \infty)$,

$$
f(x)=\theta e^{-\theta x}
$$

5. (Fisher's $F) F_{q, a}$ on $[0, \infty)$,

$$
f(x)=\frac{\Gamma((q+a) / 2) q^{q / 2} a^{a / 2}}{\Gamma(q / 2) \Gamma(a / 2)} x^{q / 2-1}(a+q x)^{-(q+a) / 2}
$$

6. (gamma) $\Gamma(\alpha, \beta)$ on $[0, \infty)$,

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}
$$

Observe that $\operatorname{Exp}(\theta)$ is $\Gamma(1, \theta)$.
7. (inverse gamma) $\Gamma^{-1}(\alpha, \beta)$ on $[0, \infty)$,

$$
f(x)=\frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} e^{-\beta / x}
$$

8. (Laplace) $\operatorname{Lap}(\mu, \sigma)$ on \mathbb{R},

$$
f(x)=\frac{1}{2 \sigma} e^{-|x-\mu| / \sigma}
$$

9. (normal) $N\left(\mu, \sigma^{2}\right)$ on \mathbb{R},

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right) .
$$

10. (Pareto) $\operatorname{Par}(\alpha, c)$ on $[c, \infty)$,

$$
f(x)=\frac{c^{\alpha} \alpha}{x^{\alpha+1}}
$$

11. (Student's $t) t_{a}\left(\mu, \sigma^{2}\right)$ on \mathbb{R},

$$
f(x)=\frac{\Gamma((a+1) / 2)}{\sqrt{\alpha \pi} \Gamma(\alpha / 2) \sigma}\left(1+\frac{(x-\mu)^{2}}{a \sigma^{2}}\right)^{-(a+1) / 2}
$$

12. (uniform) $U(a, b)$ on $[a, b]$,

$$
f(x)=\frac{1}{b-a}
$$

Example 12 (probability transform). Let the distribution function F for X be continuous and strictly increasing, then $F(X)$ is a $U(0,1)$ random variable.

If $0 \leq u \leq 1$, then

$$
P\{F(X) \leq u\}=P\left\{X \leq F^{-1}(u)\right\}=F\left(F^{-1}(u)\right)=u
$$

Exercise 13. Let X be a continuous random variable with density function f_{X}. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a monotonic differentiable function, then $Y=g(X)$ has density

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|
$$

