Review of Probability Theory II

January 29-31, 2008

1 Expectation

If the sample space $\Omega = \{\omega_1, \omega_2, \ldots\}$ is countable and g is a real-valued function, then we define the **expected** value or the **expectation** of a function f of X by

$$Eg(X) = \sum_{i} g(X(\omega_i)) P\{\omega_i\}.$$

To create a formula for discrete random variables, write R(x) for the set of ω so that $X(\omega) = x$, then the sum above can be written

$$\begin{split} Eg(X) &= \sum_{x} \sum_{\omega \in R(x)} g(X(\omega)) P\{\omega\} = \sum_{x} \sum_{\omega \in R(x)} g(x) P\{\omega\} \\ &= \sum_{x} g(x) \sum_{\omega \in R(x)} P\{\omega\} = \sum_{x} g(x) P\{\omega; X(\omega) = x\} \\ &= \sum_{x} g(x) P\{X = x\} = \sum_{x} g(x) p(x). \end{split}$$

provided that the sum converges absolutely. Here p is the mass function for X.

For a continuous random variable, with distribution function F and density f, choose a small positive value Δx , and let \tilde{X} be the random variable obtained by rounding the value of X down to the nearest integer multiple of Δx , then

$$\begin{split} Eg(\tilde{X}) &= \sum_{\tilde{x}} g(\tilde{x}) P\{\tilde{X} = \tilde{x}\} &= \sum_{\tilde{x}} g(\tilde{x}) P\{\tilde{x} \le X < \tilde{x} + \Delta x\} = \sum_{\tilde{x}} g(\tilde{x}) (F(\tilde{x} + \Delta x) - F(\tilde{x})) \\ &\approx \sum_{\tilde{x}} g(\tilde{x}) f(\tilde{x}) \Delta x \approx \int_{-\infty}^{+\infty} g(x) f(x) \ dx. \end{split}$$

Provided that the integral converges absolutely, these approximations become an equality in the limit as $\Delta x \to 0$.

Exercise 1. Let X_1 and X_2 be random variables on a countable sample space Ω having a common state space Let g_1 and g_2 be two real valued functions on the state space and two numbers c_1 and c_2 . Then

$$E[c_1g_1(X_1) + c_2g_2(X_2)] = c_1Eg_1(X_1) + c_2Eg_2(X_2).$$

Several choice for g have special names.

- 1. If g(x) = x, then $\mu = EX$ is call variously the **mean**, and the **first moment**.
- 2. If $g(x) = x^k$, then EX^k is called the *k*-th moment.
- 3. If $g(x) = (x)_k$, where $(x)_k = x(x-1)\cdots(x-k+1)$, then $E(X)_k$ is called the k-th factorial moment.
- 4. If $g(x) = (x \mu)^k$, then $E(X \mu)^k$ is called the k-th central moment.
- 5. The second central moment $\sigma_X^2 = E(X-\mu)^2$ is called the **variance.** Note that

$$\operatorname{Var}(X) = E(X-\mu)^2 = EX^2 - 2\mu EX + \mu^2 = EX^2 - 2\mu^2 + \mu^2 = EX^2 - \mu^2.$$

- 6. If X is \mathbb{R}^d -valued and $g(x) = e^{i\langle \theta, x \rangle}$, where $\langle \cdot, \cdot \rangle$ is the standard inner product, then $\phi(\theta) = Ee^{i\langle \theta, X \rangle}$ is called the **Fourier transform** or the **characteristic function**.
- 7. Similarly, if X is \mathbb{R}^d -valued and $g(x) = e^{\langle \theta, x \rangle}$, then $m(\theta) = Ee^{\langle \theta, X \rangle}$ is called the **Laplace transform** or the **moment generating function**.
- 8. If X is \mathbb{Z}^+ -valued and $g(x) = z^x$, then $\rho(z) = Ez^X = \sum_{x=0}^{\infty} P\{X = x\}z^x$ is called the (probability) generating function.

random variable	parameters	mean	variance	generating function
Bernoulli	p	p	p(1-p)	(1-p) + pz
binomial	n, p	np	np(1-p)	$((1-p)+pz)^n$
hypergeometric	N, n, k	$\frac{nk}{N}$	$\frac{nk}{N}\left(\frac{N-k}{N}\right)\left(\frac{N-n}{N-1}\right)$	
geometric	p	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$	$\frac{p}{1-(1-p)z}$
negative binomial	a, p	$a\frac{1-p}{p}$	$a\frac{1-p}{p^2}$	$\left(\frac{p}{1-(1-p)z} ight)^a$
Poisson	λ	λ	λ	$\exp(-\lambda(1-z))$
uniform	a, b	$\frac{b-a+1}{2}$	$\frac{(b-a+1)^2-1}{12}$	$\frac{z^a}{b-a+1}\frac{1-z^{b-a+1}}{1-z}$

Table of Discrete Random Variables

random variable	parameters	mean	variance	characteristic function
beta	α, β	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	$F_{1,1}(a,b;\frac{i\theta}{2\pi})$
Cauchy	μ, σ^2	none	none	$\exp(i\mu\theta - \sigma^2)$
chi-squared	a	a	2a	$\frac{1}{(1-2i\theta)^{a/2}}$
exponential	λ	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{i\lambda}{\theta+i\lambda}$
F	q, a	$\frac{a}{a-2}, a > 2$	$2a^2 \frac{q+a-2}{q(a-4)(a-2)^2}$	
gamma	lpha,eta	$\frac{lpha}{eta}$	$\frac{\alpha}{\beta^2}$	$\left(rac{ieta}{ heta+ieta} ight)^lpha$
Laplace	μ, σ	μ	$2\sigma^2$	$\frac{\exp(i\mu\theta)}{1+\sigma^2\theta^2}$
normal	μ, σ^2	μ	σ^2	$\exp(i\mu\dot{\theta} - \frac{1}{2}\sigma^2\theta^2)$
Pareto	α, c	$\frac{c\alpha}{\alpha-1}, \alpha > 1$	$\frac{c^2\alpha}{(\alpha-2)(\alpha-1)^2}$	
t	a, μ, σ^2	$\mu, a > 1$	$\sigma^2 \frac{a}{a-2}, a > 1$	
uniform	a, b	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$-i\frac{\exp(i\theta b)-\exp(i\theta a)}{\theta(b-a)}$

Table of Continuous Random Variables

2 Joint Distributions and Conditioning

A pair of random variables X_1 and X_2 is called independent if for every pair of events A_1, A_2 ,

$$P\{X_1 \in A_1, X_2 \in A_2\} = P\{X_1 \in A_1\} P\{X_2 \in A_2\}.$$
(8).

For their distribution functions, F_{X_1} and F_{X_2} , (8) is equivalent to factoring of the joint distribution function

$$F(x_1, x_2) = F_{X_1}(x_1)F_{X_2}(x_2),$$

to the factoring of joint density for continuous random variables

$$f(x_1, x_2) = f_{X_1}(x_1) f_{X_2}(x_2),$$

to the factoring of the joint mass function for discrete random variables

$$p(x_1, x_2) = p_{X_1}(x_1)p_{X_2}(x_2),$$

and, finally, to the factoring of expectations

$$Eg_1(X_1)g_2(X_2) = Eg_1(X_1)Eg_2(X_2).$$

Definition 2. For a pair of random variables X_1 and X_2 , the **covariance** with means μ_1 and μ_2 is defined by

$$Cov(X_1, X_2) = E(X_1 - \mu_1)(X_2 - \mu_2) = EX_1X_2 - \mu_1\mu_2.$$

In particular, if X_1 and X_2 are independent, then $Cov(X_1, X_2) = 0$.

 $The \ {\rm correlation}$

$$\rho(X_1, X_2) = \frac{Cov(X_1, X_2)}{\sqrt{Var(X_1) Var(X_2)}}.$$

Exercise 3. $Var(X_1 + \dots + X_n) = \sum_{i=1}^n \sum_{j=1}^n Cov(X_i, X_j).$

For a pair of jointly continuous random variables, the **marginal density** of X is

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \, dy$$

The **conditional density** of Y given X is

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)}$$

The **conditional expectation** is the expectation using the conditional density.

$$E[g(Y)|X = x] = \int_{-\infty}^{+\infty} g(y) f_{Y|X}(y|x) \, dy.$$

Similar expression marginal mass function and conditional mass function, replacing integrals by sums, exists for discrete random variables. The **conditional mass function** of Y given X is

$$p_{Y|X}(y|x) = \frac{p(x,y)}{p_X(x)}.$$

The conditional expectation is the expectation using the conditional density.

$$E[g(Y)|X=x] = \sum_{y} g(y)p_{Y|X}(y|x).$$

3 Law of Large Numbers

The law of large numbers states that the long term empirical average of independent random variables X_1, X_2, \ldots having a common distribution function F possessing a mean μ .

In words, we have with probability 1,

$$\bar{X}_n = \frac{1}{n}(X_1 + X_2 + \dots + X_n) = \frac{1}{n}S_n \to \mu \text{ as } n \to \infty.$$

We can define the emprical distribution function

$$\bar{F}_n(x) = \frac{1}{n} \# (\text{ observations from } X_1, X_2, \dots, X_n \text{that are less than or equal to } x)$$
$$= \frac{1}{n} \sum_{i=1}^n I_{(-\infty,x]}(X_i).$$

Then, by the strong law, we have with probability 1,

$$\overline{F}_n(x) \to F(x) \text{ as } n \to \infty.$$

The *Glivenko-Cantelli theorem* states that this convergence is uniform in x.

4 Central Limit Theorem

For the situation above, we have that

$$\bar{X}_n - \mu \to 0 \text{ as } n \to \infty$$

with probability 1.

The **central limit theorem** states that if we magnify the difference by a factor of \sqrt{n} , then we see convergence of the *distributions* to a normal random variable.

Definition 4. A sequence of distribution functions $\{F_n; n \ge 1\}$ is said to converge in distribution to the distribution function F if

$$\lim_{n \to \infty} F_n(x) = F(x)$$

whenever x is a continuity point for F.

Theorem 5 (Central Limit Theorem). If the sequence $\{X_n; n \ge 1\}$ introduced above has common variance σ^2 , then

$$\lim_{n \to \infty} P\left\{\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu\right) \le z\right\} = \Phi(z)$$

where Φ is the distribution function of a standard normal random variable.

We often write

$$\frac{\sqrt{n}}{\sigma} \left(\bar{X}_n - \mu \right) = \frac{S_n - n\mu}{\sigma\sqrt{n}}.$$