Review of Probability Theory II

January 29-31, 2008

1 Expectation

If the sample space $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ is countable and g is a real-valued function, then we define the expected value or the expectation of a function f of X by

$$
E g(X)=\sum_{i} g\left(X\left(\omega_{i}\right)\right) P\left\{\omega_{i}\right\} .
$$

To create a formula for discrete random variables, write $R(x)$ for the set of ω so that $X(\omega)=x$, then the sum above can be written

$$
\begin{aligned}
E g(X) & =\sum_{x} \sum_{\omega \in R(x)} g(X(\omega)) P\{\omega\}=\sum_{x} \sum_{\omega \in R(x)} g(x) P\{\omega\} \\
& =\sum_{x} g(x) \sum_{\omega \in R(x)} P\{\omega\}=\sum_{x} g(x) P\{\omega ; X(\omega)=x\} \\
& =\sum_{x} g(x) P\{X=x\}=\sum_{x} g(x) p(x) .
\end{aligned}
$$

provided that the sum converges absolutely. Here p is the mass function for X.
For a continuous random variable, with distribution function F and density f, choose a small positive value Δx, and let \tilde{X} be the random variable obtained by rounding the value of X down to the nearest integer multiple of Δx, then

$$
\begin{aligned}
E g(\tilde{X})=\sum_{\tilde{x}} g(\tilde{x}) P\{\tilde{X}=\tilde{x}\} & =\sum_{\tilde{x}} g(\tilde{x}) P\{\tilde{x} \leq X<\tilde{x}+\Delta x\}=\sum_{\tilde{x}} g(\tilde{x})(F(\tilde{x}+\Delta x)-F(\tilde{x})) \\
& \approx \sum_{\tilde{x}} g(\tilde{x}) f(\tilde{x}) \Delta x \approx \int_{-\infty}^{+\infty} g(x) f(x) d x .
\end{aligned}
$$

Provided that the integral converges absolutely, these approximations become an equality in the limit as $\Delta x \rightarrow 0$.

Exercise 1. Let X_{1} and X_{2} be random variables on a countable sample space Ω having a common state space Let g_{1} and g_{2} be two real valued functions on the state space and two numbers c_{1} and c_{2}. Then

$$
E\left[c_{1} g_{1}\left(X_{1}\right)+c_{2} g_{2}\left(X_{2}\right)\right]=c_{1} E g_{1}\left(X_{1}\right)+c_{2} E g_{2}\left(X_{2}\right) .
$$

Several choice for g have special names.

1. If $g(x)=x$, then $\mu=E X$ is call variously the mean, and the first moment.
2. If $g(x)=x^{k}$, then $E X^{k}$ is called the k-th moment.
3. If $g(x)=(x)_{k}$, where $(x)_{k}=x(x-1) \cdots(x-k+1)$, then $E(X)_{k}$ is called the k-th factorial moment.
4. If $g(x)=(x-\mu)^{k}$, then $E(X-\mu)^{k}$ is called the k-th central moment.
5. The second central moment $\sigma_{X}^{2}=E(X-\mu)^{2}$ is called the variance. Note that

$$
\operatorname{Var}(X)=E(X-\mu)^{2}=E X^{2}-2 \mu E X+\mu^{2}=E X^{2}-2 \mu^{2}+\mu^{2}=E X^{2}-\mu^{2}
$$

6. If X is \mathbb{R}^{d}-valued and $g(x)=e^{i\langle\theta, x\rangle}$, where $\langle\cdot, \cdot\rangle$ is the standard inner product, then $\phi(\theta)=E e^{i\langle\theta, X\rangle}$ is called the Fourier transform or the characteristic function.
7. Similarly, if X is \mathbb{R}^{d}-valued and $g(x)=e^{\langle\theta, x\rangle}$, then $m(\theta)=E e^{\langle\theta, X\rangle}$ is called the Laplace transform or the moment generating function.
8. If X is \mathbb{Z}^{+}-valued and $g(x)=z^{x}$, then $\rho(z)=E z^{X}=\sum_{x=0}^{\infty} P\{X=x\} z^{x}$ is called the (probability) generating function.

Table of Discrete Random Variables

random variable	parameters	mean	variance	generating function
Bernoulli	p	p	$p(1-p)$	$(1-p)+p z$
binomial	n, p	$n p$	$n p(1-p)$	$((1-p)+p z)^{n}$
hypergeometric	N, n, k	$\frac{n k}{N}$	$\frac{n k}{N}\left(\frac{N-k}{N}\right)\left(\frac{N-n}{N-1}\right)$	
geometric	p	$\frac{1-p}{p}$	$\frac{1-p}{p^{2}}$	$\frac{p}{1-(1-p) z}$
negative binomial	a, p	$a \frac{1-p}{p}$	$a \frac{1-p}{p^{2}}$	$\left(\frac{p}{1-(1-p) z}\right)^{a}$
Poisson	λ	λ	λ	$\exp (-\lambda(1-z))$
uniform	a, b	$\frac{b-a+1}{2}$	$\frac{(b-a+1)^{2}-1}{12}$	$\frac{z^{a}}{b-a+1} \frac{1-z^{b-a+1}}{1-z}$

Table of Continuous Random Variables

random variable	parameters	mean	variance	characteristic function
beta	α, β	$\frac{\alpha}{\alpha+\beta}$	$\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}$	$F_{1,1}\left(a, b ; \frac{i \theta}{2 \pi}\right)$
Cauchy	μ, σ^{2}	none	none	$\exp \left(i \mu \theta-\sigma^{2}\right)$
chi-squared	a	a	$2 a$	$\frac{1}{(1-2 i \theta)^{a / 2}}$
exponential	λ	$\frac{1}{\lambda}$	$\frac{1}{\lambda^{2}}$	$\frac{i \lambda}{\theta+i \lambda}$
F	q, a	$\frac{a}{a-2}, a>2$	$2 a^{2} \frac{q+a-2}{q(a-4)(a-2)^{2}}$	
gamma	α, β	$\frac{\alpha}{\beta}$	$\frac{\alpha}{\beta^{2}}$	$\left(\frac{i \beta}{\theta+i \beta}\right)^{\alpha}$
Laplace	μ, σ	μ	$2 \sigma^{2}$	$\frac{\log }{1+\sigma^{2} \theta^{2} \theta^{2}}$
normal	μ, σ^{2}	μ	$\frac{\sigma^{2}}{2}$	
Pareto	α, c	$\frac{c \alpha}{\alpha-1}, \alpha>1$	$\frac{c^{2} \alpha}{(\alpha-2)(\alpha-1)^{2}}$	
t	a, μ, σ^{2}	$\mu, a>1$	$\sigma^{2} \frac{a}{a-2}, a>1$	
uniform	a, b	$\frac{a+b}{2}$	$\frac{(b-a)^{2}}{12}$	$-i \frac{\exp (i \theta b)-\exp (i \theta a)}{\theta(b-a)}$

2 Joint Distributions and Conditioning

A pair of random variables X_{1} and X_{2} is called independent if for every pair of events A_{1}, A_{2},

$$
\begin{equation*}
P\left\{X_{1} \in A_{1}, X_{2} \in A_{2}\right\}=P\left\{X_{1} \in A_{1}\right\} P\left\{X_{2} \in A_{2}\right\} \tag{8}
\end{equation*}
$$

For their distribution functions, $F_{X_{1}}$ and $F_{X_{2}}$, (8) is equivalent to factoring of the joint distribution function

$$
F\left(x_{1}, x_{2}\right)=F_{X_{1}}\left(x_{1}\right) F_{X_{2}}\left(x_{2}\right),
$$

to the factoring of joint density for continuous random variables

$$
f\left(x_{1}, x_{2}\right)=f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)
$$

to the factoring of the joint mass function for discrete random variables

$$
p\left(x_{1}, x_{2}\right)=p_{X_{1}}\left(x_{1}\right) p_{X_{2}}\left(x_{2}\right)
$$

and, finally, to the factoring of expectations

$$
E g_{1}\left(X_{1}\right) g_{2}\left(X_{2}\right)=E g_{1}\left(X_{1}\right) E g_{2}\left(X_{2}\right)
$$

Definition 2. For a pair of random variables X_{1} and X_{2}, the covariance with means μ_{1} and μ_{2} is defined by

$$
\operatorname{Cov}\left(X_{1}, X_{2}\right)=E\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)=E X_{1} X_{2}-\mu_{1} \mu_{2}
$$

In particular, if X_{1} and X_{2} are independent, then $\operatorname{Cov}\left(X_{1}, X_{2}\right)=0$.
The correlation

$$
\rho\left(X_{1}, X_{2}\right)=\frac{\operatorname{Cov}\left(X_{1}, X_{2}\right)}{\sqrt{\operatorname{Var}\left(X_{1}\right) \operatorname{Var}\left(X_{2}\right)}}
$$

Exercise 3. $\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$.
For a pair of jointly continuous random variables, the marginal density of X is

$$
f_{X}(x)=\int_{-\infty}^{+\infty} f(x, y) d y
$$

The conditional density of Y given X is

$$
f_{Y \mid X}(y \mid x)=\frac{f(x, y)}{f_{X}(x)}
$$

The conditional expectation is the expectation using the conditional density.

$$
E[g(Y) \mid X=x]=\int_{-\infty}^{+\infty} g(y) f_{Y \mid X}(y \mid x) d y
$$

Similar expression marginal mass function and conditional mass function, replacing integrals by sums, exists for discrete random variables. The conditional mass function of Y given X is

$$
p_{Y \mid X}(y \mid x)=\frac{p(x, y)}{p_{X}(x)}
$$

The conditional expectation is the expectation using the conditional density.

$$
E[g(Y) \mid X=x]=\sum_{y} g(y) p_{Y \mid X}(y \mid x)
$$

3 Law of Large Numbers

The law of large numbers states that the long term empirical average of independent random variables X_{1}, X_{2}, \ldots having a common distribution function F possessing a mean μ.

In words, we have with probability 1 ,

$$
\bar{X}_{n}=\frac{1}{n}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=\frac{1}{n} S_{n} \rightarrow \mu \text { as } n \rightarrow \infty .
$$

We can defiine the emprical distribution function

$$
\begin{aligned}
\bar{F}_{n}(x) & =\frac{1}{n} \#\left(\text { observations from } X_{1}, X_{2}, \ldots, X_{n} \text { that are less than or equal to } x\right) \\
& =\frac{1}{n} \sum_{i=1}^{n} I_{(-\infty, x]}\left(X_{i}\right)
\end{aligned}
$$

Then, by the strong law, we have with probability 1 ,

$$
\bar{F}_{n}(x) \rightarrow F(x) \text { as } n \rightarrow \infty
$$

The Glivenko-Cantelli theorem states that this convergence is uniform in x.

4 Central Limit Theorem

For the situation above, we have that

$$
\bar{X}_{n}-\mu \rightarrow 0 \text { as } n \rightarrow \infty
$$

with probability 1.
The central limit theorem states that if we magnify the difference by a factor of \sqrt{n}, then we see convergence of the distributions to a normal random variable.

Definition 4. A sequence of distribution functions $\left\{F_{n} ; n \geq 1\right\}$ is said to converge in distribution to the distribution function F if

$$
\lim _{n \rightarrow \infty} F_{n}(x)=F(x)
$$

whenever x is a continuity point for F.
Theorem 5 (Central Limit Theorem). If the sequence $\left\{X_{n} ; n \geq 1\right\}$ introduced above has common variance σ^{2}, then

$$
\lim _{n \rightarrow \infty} P\left\{\frac{\sqrt{n}}{\sigma}\left(\bar{X}_{n}-\mu\right) \leq z\right\}=\Phi(z)
$$

where Φ is the distribution function of a standard normal random variable.
We often write

$$
\frac{\sqrt{n}}{\sigma}\left(\bar{X}_{n}-\mu\right)=\frac{S_{n}-n \mu}{\sigma \sqrt{n}} .
$$

