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1 Expectation

If the sample space Ω = {ω1, ω2, . . .} is countable and g is a real-valued function, then we define the expected
value or the expectation of a function f of X by

Eg(X) =
∑

i

g(X(ωi))P{ωi}.

To create a formula for discrete random variables, write R(x) for the set of ω so that X(ω) = x, then the
sum above can be written

Eg(X) =
∑

x

∑
ω∈R(x)

g(X(ω))P{ω} =
∑

x

∑
ω∈R(x)

g(x)P{ω}

=
∑

x

g(x)
∑

ω∈R(x)

P{ω} =
∑

x

g(x)P{ω;X(ω) = x}

=
∑

x

g(x)P{X = x} =
∑

x

g(x)p(x).

provided that the sum converges absolutely. Here p is the mass function for X.
For a continuous random variable, with distribution function F and density f , choose a small positive

value ∆x, and let X̃ be the random variable obtained by rounding the value of X down to the nearest integer
multiple of ∆x, then

Eg(X̃) =
∑

x̃

g(x̃)P{X̃ = x̃} =
∑

x̃

g(x̃)P{x̃ ≤ X < x̃ + ∆x} =
∑

x̃

g(x̃)(F (x̃ + ∆x)− F (x̃))

≈
∑

x̃

g(x̃)f(x̃)∆x ≈
∫ +∞

−∞
g(x)f(x) dx.

Provided that the integral converges absolutely, these approximations become an equality in the limit as
∆x → 0.

Exercise 1. Let X1 and X2 be random variables on a countable sample space Ω having a common state
space Let g1 and g2 be two real valued functions on the state space and two numbers c1 and c2. Then

E[c1g1(X1) + c2g2(X2)] = c1Eg1(X1) + c2Eg2(X2).
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Several choice for g have special names.

1. If g(x) = x, then µ = EX is call variously the mean, and the first moment.

2. If g(x) = xk, then EXk is called the k-th moment.

3. If g(x) = (x)k, where (x)k = x(x−1) · · · (x−k+1), then E(X)k is called the k-th factorial moment.

4. If g(x) = (x− µ)k, then E(X − µ)k is called the k-th central moment.

5. The second central moment σ2
X = E(X − µ)2 is called the variance. Note that

Var(X) = E(X − µ)2 = EX2 − 2µEX + µ2 = EX2 − 2µ2 + µ2 = EX2 − µ2.

6. If X is Rd-valued and g(x) = ei〈θ,x〉, where 〈·, ·〉 is the standard inner product, then φ(θ) = Eei〈θ,X〉 is
called the Fourier transform or the characteristic function.

7. Similarly, if X is Rd-valued and g(x) = e〈θ,x〉, then m(θ) = Ee〈θ,X〉 is called the Laplace transform
or the moment generating function.

8. If X is Z+-valued and g(x) = zx, then ρ(z) = EzX =
∑∞

x=0 P{X = x}zx is called the (probability)
generating function.

Table of Discrete Random Variables

random variable parameters mean variance generating function

Bernoulli p p p(1− p) (1− p) + pz
binomial n, p np np(1− p) ((1− p) + pz)n

hypergeometric N, n, k nk
N

nk
N

(
N−k

N

) (
N−n
N−1

)
geometric p 1−p

p
1−p
p2

p
1−(1−p)z

negative binomial a, p a1−p
p

a1−p
p2

(
p

1−(1−p)z

)a

Poisson λ λ λ exp(−λ(1− z))

uniform a, b b−a+1
2

(b−a+1)2−1
12

za

b−a+1
1−zb−a+1

1−z
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Table of Continuous Random Variables

random variable parameters mean variance characteristic function

beta α, β α
α+β

αβ
(α+β)2(α+β+1)

F1,1(a, b; iθ
2π

)

Cauchy µ, σ2 none none exp(iµθ − σ2)
chi-squared a a 2a 1

(1−2iθ)a/2

exponential λ 1
λ

1
λ2

iλ
θ+iλ

F q, a a
a−2

, a > 2 2a2 q+a−2
q(a−4)(a−2)2

gamma α, β α
β

α
β2

(
iβ

θ+iβ

)α

Laplace µ, σ µ 2σ2 exp(iµθ)
1+σ2θ2

normal µ, σ2 µ σ2 exp(iµθ − 1
2
σ2θ2)

Pareto α, c cα
α−1

, α > 1 c2α
(α−2)(α−1)2

t a, µ, σ2 µ, a > 1 σ2 a
a−2

, a > 1

uniform a, b a+b
2

(b−a)2

12
−i exp(iθb)−exp(iθa)

θ(b−a)

2 Joint Distributions and Conditioning

A pair of random variables X1 and X2 is called independent if for every pair of events A1, A2,

P{X1 ∈ A1, X2 ∈ A2} = P{X1 ∈ A1}P{X2 ∈ A2}. (8).

For their distribution functions, FX1 and FX2 , (8) is equivalent to factoring of the joint distribution
function

F (x1, x2) = FX1(x1)FX2(x2),

to the factoring of joint density for continuous random variables

f(x1, x2) = fX1(x1)fX2(x2),

to the factoring of the joint mass function for discrete random variables

p(x1, x2) = pX1(x1)pX2(x2),

and, finally, to the factoring of expectations

Eg1(X1)g2(X2) = Eg1(X1)Eg2(X2).

Definition 2. For a pair of random variables X1 and X2, the covariance with means µ1 and µ2 is defined
by

Cov(X1, X2) = E(X1 − µ1)(X2 − µ2) = EX1X2 − µ1µ2.

In particular, if X1 and X2 are independent, then Cov(X1, X2) = 0.
The correlation

ρ(X1, X2) =
Cov(X1, X2)√

Var(X1)Var(X2)
.
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Exercise 3. Var(X1 + · · ·+ Xn) =
∑n

i=1

∑n
j=1 Cov(Xi, Xj).

For a pair of jointly continuous random variables, the marginal density of X is

fX(x) =
∫ +∞

−∞
f(x, y) dy.

The conditional density of Y given X is

fY |X(y|x) =
f(x, y)
fX(x)

.

The conditional expectation is the expectation using the conditional density.

E[g(Y )|X = x] =
∫ +∞

−∞
g(y)fY |X(y|x) dy.

Similar expression marginal mass function and conditional mass function, replacing integrals by sums,
exists for discrete random variables. The conditional mass function of Y given X is

pY |X(y|x) =
p(x, y)
pX(x)

.

The conditional expectation is the expectation using the conditional density.

E[g(Y )|X = x] =
∑

y

g(y)pY |X(y|x).

3 Law of Large Numbers

The law of large numbers states that the long term empirical average of independent random variables
X1, X2, . . . having a common distribution function F possessing a mean µ.

In words, we have with probability 1,

X̄n =
1
n

(X1 + X2 + · · ·+ Xn) =
1
n

Sn → µ as n →∞.

We can defiine the emprical distribution function

F̄n(x) =
1
n

#( observations from X1, X2, . . . , Xnthat are less than or equal to x)

=
1
n

n∑
i=1

I(−∞,x](Xi).

Then, by the strong law,we have with probability 1,

F̄n(x) → F (x) as n →∞.

The Glivenko-Cantelli theorem states that this convergence is uniform in x.
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4 Central Limit Theorem

For the situation above, we have that
X̄n − µ → 0 as n →∞

with probability 1.
The central limit theorem states that if we magnify the difference by a factor of

√
n, then we see

convergence of the distributions to a normal random variable.

Definition 4. A sequence of distribution functions {Fn;n ≥ 1} is said to converge in distribution to the
distribution function F if

lim
n→∞

Fn(x) = F (x)

whenever x is a continuity point for F .

Theorem 5 (Central Limit Theorem). If the sequence {Xn;n ≥ 1} introduced above has common variance
σ2, then

lim
n→∞

P

{√
n

σ

(
X̄n − µ

)
≤ z

}
= Φ(z)

where Φ is the distribution function of a standard normal random variable.

We often write √
n

σ

(
X̄n − µ

)
=

Sn − nµ

σ
√

n
.
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