Review of Probability Theory II

January 29-31, 2008

1 Expectation

If the sample space @ = {wy,ws, ...} is countable and g is a real-valued function, then we define the expected
value or the expectation of a function f of X by

Zg wz P{‘Uz}

To create a formula for discrete random variables, write R(x) for the set of w so that X (w) = z, then the
sum above can be written

Eg(X) = > > gX@)P{w}r=) > g@)P{w}
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= Zg(:c P{X =z} = Zg(f)]?(fﬂ)

provided that the sum converges absolutely. Here p is the mass function for X.

For a continuous random variable, with distribution function F' and density f, choose a small positive
value Az, and let X be the random variable obtained by rounding the value of X down to the nearest integer
multiple of Ax, then

X):Zg(j)p{f(:f} = Zg P{z<X<z+Aa:}*Zg (T + Az) — F(Z))
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Provided that the integral converges absolutely, these approximations become an equality in the limit as
Az — 0.

Exercise 1. Let X7 and Xs be random wvariables on a countable sample space Q0 having a common state
space Let g1 and go be two real valued functions on the state space and two numbers ¢y and co. Then

Elc191(X1) + c292(X2)] = c1Eg1(X1) + c2Ega(X2).



Several choice for g have special names.

1.
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If g(z) = x, then p = FX is call variously the mean, and the first moment.
If g(z) = 2¥, then EXP* is called the k-th moment.
If g(z) = (2)k, where (z)r = xz(z—1)--- (x—k+1), then E(X)y is called the k-th factorial moment.
If g(z) = (x — p)*, then E(X — p)* is called the k-th central moment.
The second central moment o3 = E(X — pu)? is called the variance. Note that

Var(X) = E(X — p)? = EX? - 2uEX + p? = EX? — 2% 4 p® = EX? — 1%
If X is R%valued and g(z) = €¥%*) where (-, ) is the standard inner product, then ¢(f) = Ee*%X) is

called the Fourier transform or the characteristic function.

Similarly, if X is R%-valued and g(z) = e{%® then m(f) = Fe!®X) is called the Laplace transform
or the moment generating function.

. If X is ZT-valued and g(z) = 2%, then p(z) = Ez* = o7 | P{X = 2}2" is called the (probability)

generating function.

Table of Discrete Random Variables

] random variable H parameters \ mean \ variance \ generating function \
Bernoulli P p p(1 —p) (1—p)+p2
binomial n,p np np(l —p) (1 —p)+p2)"
hypergeometric N,n, k I”Wk ok (Bk) (B=2)
geometric p =F 1;—2]0 00 ]
negative binomial a,p a% a% (ﬁ)
Poisson A A A exp(—A(1 — 2))
uniform a,b big“ (bfag)zfl bj:ﬂ kib%:ﬂ




Table of Continuous Random Variables

’ random variable H parameters \ mean \ variance \ characteristic function ‘
beta 5 55 | GrFem Fia(a,bi5)
Cauchy , o> none none exp(ipf — o?)
chi-squared a a 2a W
exponential A % % efz‘ 3
F q,a s a>2 2a2% ]
gamma a, 3 3 Y <6_i£ B)
Laplace i, o 1 202 Cffc(r%?
normal u, o> U czz exp(ipd — 30°0°)
Pareto a,c a>1 m
t a, jt, o’ woa > 1 ot a> 1
uniform a,b aTer @ —i—eXp(w;()b__ Ez()p(wa)

2 Joint Distributions and Conditioning

A pair of random variables X; and X is called independent if for every pair of events Aq, Ao,
P{Xl eAl,XQ EAQ}:P{Xl GAl}P{XQ 6A2}. (8)

For their distribution functions, Fx, and F¥,, (8) is equivalent to factoring of the joint distribution
function

F(z1,72) = Fx, (71)Fx,(22),
to the factoring of joint density for continuous random variables

f(z1,m2) = fx,(z1) fx, (22),

to the factoring of the joint mass function for discrete random variables

p(x1,72) = px, (21)px, (T2),

and, finally, to the factoring of expectations

Eg1(X1)g2(X2) = Eg1(X1)Ega(Xa).

Definition 2. For a pair of random variables X1 and Xs, the covariance with means py, and us is defined
by
CO’U(Xl,Xg) = E(Xl — /Ll)(XQ — ‘LLQ) = EX1X2 — U122
In particular, if X1 and Xo are independent, then Cov(X1, X3) = 0.
The correlation

B Cov(X1, X2)
A, 30) = e



Exercise 3. Var(X + -+ X,) = >1_, >0 Cou(X;, Xj).
For a pair of jointly continuous random variables, the marginal density of X is
+o00o
fx@ = [ sy dy
— o0
The conditional density of Y given X is

fY|X(y|$) = J;f(f)) .

The conditional expectation is the expectation using the conditional density.

+o0
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Similar expression marginal mass function and conditional mass function, replacing integrals by sums,
exists for discrete random variables. The conditional mass function of Y given X is

pyix (ylz) = 2

The conditional expectation is the expectation using the conditional density.

Elg(Y)IX = 2] =) g(y)pyix (ylz).

3 Law of Large Numbers
The law of large numbers states that the long term empirical average of independent random variables
X1, X5, ... having a common distribution function F' possessing a mean p.
In words, we have with probability 1,
_ 1 1
Xp=—-(X14+Xo+ - +X,)=—-5, > pasn— oo.
n n

We can defiine the emprical distribution function

#( observations from X7, Xo, ..., X, that are less than or equal to x)

Z I(—oo,m] (Xz)
i=1

Then, by the strong law,we have with probability 1,

F,(z) =

Sl 3=

F,(z) — F(z) as n — oo.

The Glivenko-Cantelli theorem states that this convergence is uniform in z.



4 Central Limit Theorem

For the situation above, we have that

X,—p—0asn— o0

with probability 1.
The central limit theorem states that if we magnify the difference by a factor of \/n, then we see
convergence of the distributions to a normal random variable.

Definition 4. A sequence of distribution functions {Fy;n > 1} is said to converge in distribution to the
distribution function F if
lim F,(z) = F(x)

n—oo

whenever x is a continuity point for F.

Theorem 5 (Central Limit Theorem). If the sequence {X,;n > 1} introduced above has common variance
2
o, then

lim P{\f (Xn—p) < z} =d(2)

n—oo

where ® is the distribution function of a standard normal random variable.

We often write
N _ Sp—np
o - oyn



