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Many of the examples that we have encountered have allowed us to use exact calculations or to approxi-
mate calculations using the central limit theorem. However, many of the questions present in contemporary
statistical questions lead us to make estimates that cannot be accomplished in closed form. Consequently,
statisticians have developed a variety of simulation techniques. We present two of them here - importance
sampling and the bootstrap.

These Monte Carlo methods use stochastic simulations to approximate solutions to questions too
difficult to solve analytically. For example, if X1, X2, . . . are independent random variables uniformally
distributed on the interval [0, 1]. Then, by the strong law of large numbers

g(X)n =
1
n

n∑
i=1

g(Xi) →
∫ 1

0

g(x) dx = I(g)

with probability 1 as n → ∞. The error in the estimate of the integral is supplied by the central limit
theorem

I(g)− g(X)n ≈
σ√
n

Z

where

σ2 =
∫ 1

0

(g(x)− I(g))2 dx.

Example 1. Let

g(x) =
e−x

1 + x3
for x ∈ [0, 1]

We perform the Monte Carlo integration 1000 times using n = 100.

> Ig<-rep(0,1000)
> for (i in 1:1000){x<-runif(100);gx<-exp(-x)/(1+x^3);Ig[i]=mean(gx)}
> mean(Ig)
[1] 0.5554112
> sqrt(var(Ig))
[1] 0.02387787
> hist(Ig,probability=TRUE)
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1 Importance Sampling

Importance sampling methods begin with the observation that we could perform the Monte Carlo
integration beginning with Y1, Y2, . . . independent random variables with common density fY . This density is
called the importance sampling function or the proposal density. From this, we define the importance
sampling weights

w(y) =
g(y)

fY (y)
.

Then

w(Y )n =
1
n

n∑
i=1

w(Yi) →
∫ 1

0

w(y)fY (y) dy =
∫ 1

0

g(y)
fY (y)

fY (y) dy =
∫ 1

0

g(y) dy = I(g).

This is an improvement if the variance in the estimator decreases, i.e.,

Var(w(Y )) =
∫ 1

0

(w(y)− I(g))2fY (y) dy = σ2
f << σ2.

Example 2. With g as above, we will try to perform the integral∫ 1

0

g(y) dy

using a proposal density. Recall the probability transform: If Y is a continuous random variable, then
U = FY (Y ) is uniform random variable on [0, 1]. Thus, F−1

Y (U) has the same distribution as Y ..
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If we use a density proportional to exp(−y), we obtain

fy(y) =
e

e− 1
exp(−y), y ∈ [0, 1].

The distribution function
FY (y) =

e

e− 1
(1− exp(−y)), y ∈ [0, 1].

Its inverse
F−1

Y (u) = 1− ln(e− (e− 1)u)

The weight function

w(y) =
g(y)

fY (y)
=

e− 1
e(1 + y3)

.

> Ig<-rep(0,1000)
> for (i in 1:1000){u<-runif(100);y<-1-log(exp(1)-(exp(1)-1)*u);
wy<-((exp(1)-1)/(exp(1)*(1+u^3)));Ig[i]=mean(wy)}
> mean(Ig)
[1] 0.5283857
> sqrt(var(Ig))
[1] 0.01015961
> hist(Ig,probability=TRUE)
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2 The bootstrap

The strategy of the bootstrap is to perform a calculation using the empirical cumulative distribution
function F̂n as an estimate of the calculation one would like to perform using the distribution function F .

Let X = (X1, · · · , Xn) be a simple random sample of S valued random variables
If the empirical distribution function

F̂n(x) =
1
n

n∑
i=1

I(−∞,x](Xi) =
1
n

#{Xi ≤ x}

is used, then the method is the nonparametric bootstrap.
If θ̂n is an estimate of θ and F̂n(x) = FX1|Θ(x|θ̂n) is used, then the method is the parametric bootstrap.
Let F be a set of cumulative distribution functions and let

R : Sn ×F → R

be some function of interest, e.g., the difference between the sample median of X and the median of F . Then
the bootstrap replaces

R(X, F ) by R(X∗, F̂n).

Here,

• X is a simple random sample of size n from the distribution function F , and

• X∗ is a simple random sample of size n from the empirical cumulative distribution function F̂n.

The bootstrap was originally designed as a tool for estimating bias and standard error of a statistic.

Example 3. Assume that the sample is real values having distribution function F . Let

R(X, F ) =

(
1
n

n∑
i=1

Xi

)2

−
(∫

x dF (x)
)2

,

then

R(X∗, F̂n) =

(
1
n

n∑
i=1

X∗
i

)2

− (x̄n),

where x̄n is the observed sample average. Use

s2
n =

1
n

n∑
i=1

(xi − x̄n)2

as an estimate of the variance. Now

E[R(X, F )] =
1
n

σ2, E[R(X∗, F̂n)|X = x] =
1
n

s2
n.
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Example 4. We will look to see if there is a correlation between a major league baseball player’s salary and
his performance based on his batting average. In this case the, F is the joint distribution function of the
salary X and the batting average Y of major league baseball players.

A joint empirical distribution function

F̂n(x, y) =
1
n

n∑
i=1

I(−∞,x](Xi)I(−∞,y](Yi) =
1
n

#{Xi ≤ x, Yi ≤ y}

is obtained from a random sample of 50 salaries and lifetime batting averages:

> salary
[1] 9.500 8.000 7.330 7.250 7.166 7.086 6.375 6.250 6.200 6.000 5.825
[12] 5.625 5.000 4.900 4.500 4.000 3.625 3.450 3.150 3.000 2.500 2.400
[23] 2.250 2.125 2.100 1.800 1.500 1.088 1.000 0.950 0.800 0.750 0.720
[34] 0.675 0.630 0.600 0.500 0.325 0.320 0.305 0.285 0.232 0.227 0.221
[45] 0.220 0.220 0.217 0.202 0.202 0.200
> average
[1] 0.269 0.282 0.327 0.259 0.240 0.270 0.253 0.238 0.300 0.247 0.213
[12] 0.238 0.245 0.276 0.268 0.221 0.301 0.242 0.273 0.250 0.208 0.306
[23] 0.235 0.277 0.227 0.307 0.276 0.216 0.289 0.237 0.202 0.344 0.185
[34] 0.234 0.324 0.200 0.214 0.262 0.207 0.233 0.259 0.250 0.278 0.237
[45] 0.235 0.243 0.297 0.333 0.301 0.224
> cor(salary,average)
[1] 0.1067092

The question “Is this value, 0.1067092, for the correlation statistically significantly above 0?” leads to the
hypothesis

H0 : ρ ≤ 0 versus H1 : ρ > 0.

The bootstrap strategy is to choose 50 salaries with replacement and independently 50 batting averages
with replacement and to compute the correlation between these bootstrapped salaries and bootstrapped batting
averages. Here is the R command that give 1000 bootstrap correlations. We take this as the distribution of
correlations under the null hypothesis.

> for (i in 1:1000){bavg<-sample(average,50,replace=TRUE);
bsal<-sample(salary,50,replace=TRUE);corr[i]=cor(bavg,bsal)}
> hist(corr,probability=TRUE)
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The P -value for this test is the probability that correlation, under the null hypothesis, is above the obseerved
correlation, 0.1067092. Of the 1000 bootstrap sample, 526 bootstrap correlations were below 0.1067092 and
474 were above. Thus, the bootstrapped P -value for the test is 0.474 and we cannot reject the null hypothesis
of no correlation between the salary and batting average of major league baseball players.
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